Exogenous Vitreoscilla globin gene (vgb), lytic genes of phage A with S amber mutation (S-RRz) and poly(B-hydroxybutyrate) (PHB) biosynthetic genes (phbCAB) were cloned into a same Escherichia coli cell, simultaneousl...Exogenous Vitreoscilla globin gene (vgb), lytic genes of phage A with S amber mutation (S-RRz) and poly(B-hydroxybutyrate) (PHB) biosynthetic genes (phbCAB) were cloned into a same Escherichia coli cell, simultaneously or respectively. Six novel strains containing phbCAB and vgb with or without lytic genes were constructed. Strain VG1 (pTU14), in which vgb, phbCAB and S-RRz could all be successfully expressed, has superior characteristics in cell growth and PHB accumulation, while the results of strains containing vgb and phbCAB without S- RRz were not better than that of strains harbored ph&CAB only. The simultaneous expression of vgb and S- RRz in the recombinant VG1 (pTU14) showed a great potential for low-cost production of PHB.展开更多
The latent expression pattern of Epstein-Barr Virus (EBV)igenes in nasopharyngeal carcinoma (NPC) has been extensively investigated, and the expression of several lytic genes in NPC has been reported. However, com...The latent expression pattern of Epstein-Barr Virus (EBV)igenes in nasopharyngeal carcinoma (NPC) has been extensively investigated, and the expression of several lytic genes in NPC has been reported. However, comprehensive information through EBV transcriptome analysis in NPC is limited. We performed paired-end RNA-seq to systematically and comprehensively characterize the expression of EBV genes in NPC tissue and C666-1 NPC cell line, which consistently carries EBV. In addition to the transcripts restricted to type II latency infection, the type Ⅲ latency EBNA3s genes and a substantial number of lytic genes, such as BZLF1, BRLF1, and BMRF1, were detected through RNA-seq and were further verified in C666-1 cells and NPC tissue through real- time PCR. We also performed clustering analysis to classify NPC patient groups in terms of EBV gene expression, which presented two subtypes of NPC samples. Results revealed interesting patterns of EBV gene expression in NPC patients. This clustering was correlated with many signaling pathways, such as those related to heterotrimeric G-protein signaling, inflammation mediated by chemokine and cytokine signaling, ribosomes, protein metabolism, influenza infection, and ECM-receptor interaction. Our combined findings suggested that the expression of EBV genes in NPC is restricted not only to type II latency genes but also to type Ⅲ latency and lyric genes. This study provided further insights into the potential role of EBV in the development of NPC.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29834103, 29876021).
文摘Exogenous Vitreoscilla globin gene (vgb), lytic genes of phage A with S amber mutation (S-RRz) and poly(B-hydroxybutyrate) (PHB) biosynthetic genes (phbCAB) were cloned into a same Escherichia coli cell, simultaneously or respectively. Six novel strains containing phbCAB and vgb with or without lytic genes were constructed. Strain VG1 (pTU14), in which vgb, phbCAB and S-RRz could all be successfully expressed, has superior characteristics in cell growth and PHB accumulation, while the results of strains containing vgb and phbCAB without S- RRz were not better than that of strains harbored ph&CAB only. The simultaneous expression of vgb and S- RRz in the recombinant VG1 (pTU14) showed a great potential for low-cost production of PHB.
基金This study was supported by 973 Program and 863 Program from the Ministry of Science and Technology of China (Nos. 2011CB504300 and 2015AA020931), National Natural Science Foundation of China (Nos. 91440106, 91019015, and 81302037), Ph.D. Startup of Guangzhou Medical University (No. 2012C65), Guangzhou Science and Technology Planing Project (No. 2014J4100181), and Young Teacher Training Program ofStm Yat-sen University (No. 13ykpy50).
文摘The latent expression pattern of Epstein-Barr Virus (EBV)igenes in nasopharyngeal carcinoma (NPC) has been extensively investigated, and the expression of several lytic genes in NPC has been reported. However, comprehensive information through EBV transcriptome analysis in NPC is limited. We performed paired-end RNA-seq to systematically and comprehensively characterize the expression of EBV genes in NPC tissue and C666-1 NPC cell line, which consistently carries EBV. In addition to the transcripts restricted to type II latency infection, the type Ⅲ latency EBNA3s genes and a substantial number of lytic genes, such as BZLF1, BRLF1, and BMRF1, were detected through RNA-seq and were further verified in C666-1 cells and NPC tissue through real- time PCR. We also performed clustering analysis to classify NPC patient groups in terms of EBV gene expression, which presented two subtypes of NPC samples. Results revealed interesting patterns of EBV gene expression in NPC patients. This clustering was correlated with many signaling pathways, such as those related to heterotrimeric G-protein signaling, inflammation mediated by chemokine and cytokine signaling, ribosomes, protein metabolism, influenza infection, and ECM-receptor interaction. Our combined findings suggested that the expression of EBV genes in NPC is restricted not only to type II latency genes but also to type Ⅲ latency and lyric genes. This study provided further insights into the potential role of EBV in the development of NPC.