Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating perio...Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features.展开更多
For pulsed power devices, surface flashover phenomena across solid insulators greatly restrict their overall performance. In recent decades, much attention has been paid on enhancing the surface electric withstanding ...For pulsed power devices, surface flashover phenomena across solid insulators greatly restrict their overall performance. In recent decades, much attention has been paid on enhancing the surface electric withstanding strength of insulators, and it is found that surface treatment of material is useful to improve the surface flashover voltage. The carburization treatment is employed to modify the surface components of newly-developed machinable ceramics (MC) materials. A series of MC samples with different glucose solution concentration (0%, 10%, 20%, 30% and 40%) are prepared by chemical reactions for surface carburization modification, and their surface fiashover characteristics are investigated under pulsed voltage in vacuum. It is found that the surface carburization treatment greatly modifies the surface resistivity of MCs and hence the flashover behaviors. Based on the reduction of surface resistivity and the secondary electron emission avalanche (SEEA) theory, the adjustment of flashover withstanding ability can be reasonably explained.展开更多
A new type of machinable bioactive glass-ceramics for bone substitution has been developed in the glass system SiO_2-MgO-K_2O-F^--CaO-P_2O_5, which contains Mg- muscovite [K_2Mg_5 (Si_8O_(20)) F_4] and fluorapatite as...A new type of machinable bioactive glass-ceramics for bone substitution has been developed in the glass system SiO_2-MgO-K_2O-F^--CaO-P_2O_5, which contains Mg- muscovite [K_2Mg_5 (Si_8O_(20)) F_4] and fluorapatite as the two main crystal phases. The phase separation and the crystallization of the glass have been studied. A series of tests have showed that the material is good at mechanical property and bioactivity. Espe- cially, by analysing the structure of the interface layer between the material and the bone of animal with scanning electron microscope, electron probe, etc., it has been found that the new bone hydroxya- patite is formed on the surface of the material so that the material is connected firmly with the bone.展开更多
The present paper discusses the development of the first and second order model for predicting the chemical etching variables, namely, etching rate, surface roughness and accuracy of advanced ceramics. The first and s...The present paper discusses the development of the first and second order model for predicting the chemical etching variables, namely, etching rate, surface roughness and accuracy of advanced ceramics. The first and second order etching rate, surface roughness and accuracy equations were developed using the Response Surface Method (RSM). The etching variables included etching temperature, etching duration, solution and solution concentration. The predictive models’ analyses were supported with the aid of the statistical software package – Design Expert (DE 7). The effects of the individual etching variables and interaction between these variables were also investigated. The study showed that predictive models successfully predicted the etching rate, surface roughness and accuracy readings recorded experimentally with 95% confident interval. The results obtained from the predictive models were also compared with Multilayer Perceptron Artificial Neural Network (ANN). Chemical Etching variables predictive by ANN were in good agreement with those with those obtained by RSM. This observation indicated the potential of ANN in predicting chemical etching variables thus eliminating the need for exhaustive chemical etching in optimization.展开更多
A machinable Y TZP/LaPO 4 composite ceramic was prepared by infiltrating LaPO 4 liquid precursor into Y TZP porous ceramic. Sintered Y TZP ceramic preformed with 35% (volume fraction) open pore volume was made by...A machinable Y TZP/LaPO 4 composite ceramic was prepared by infiltrating LaPO 4 liquid precursor into Y TZP porous ceramic. Sintered Y TZP ceramic preformed with 35% (volume fraction) open pore volume was made by adding graphite (30%, volume fraction). The Y TZP/LaPO 4 composite ceramics containing different LaPO 4 contents were obtained by infiltration and pyrolysis cycles. The machinability and mechanical properties of materials were investigated. The results show that the machinable Y TZP/LaPO 4 composite ceramics containing 2 3% to 7.5% (volume fraction) LaPO 4 has good machinability as well as outstanding mechanical properties.展开更多
The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method. The compos...The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method. The composite sol was then transformed into gel by aging under different temperatures. The gel was dried finally by super critically drying method and sintered to obtain the machinable bioactive glass-ceramics. Effect of thermal treatment on crystallization of the glass-ceramics was investigated by X-ray diffraction ( XRD ) analysis. Microstructure of the glass- ceramics was observed by Scanning Electron Microscopy (SEM) and the mechanism of machinability was discussed. Phlogopite and hydroxylapatite were identified as main crystal phases by XRD analysis under thermal treatment at 750℃ and 950℃ for 1.5 h separately. The relative bulk density could achieve 99% under 1050℃ for 4 h. Microstructure of the glass-ceramics showed that the randomly distributed phlogopite and hydroxylapatite phases were favorable to the machinability of the glass-ceramics. A mean bending strength of about 160- 180 MPa and a fracture toughness parameter KIC of aboat 2.1-2.3 were determined for the glass-ceramics.展开更多
The machinability tests were conducted by using various process parameters on a CA6164 lathe with a dynamometer. The metallurgical properties, machinability and mechanical properties of the developed alloy were compar...The machinability tests were conducted by using various process parameters on a CA6164 lathe with a dynamometer. The metallurgical properties, machinability and mechanical properties of the developed alloy were compared with those of an austenite stainless steel 1Cr18Ni9Ti. The results show that the machinability of the austenitic stainless steels with free cutting additives is much better than that of 1Cr18Ni9Ti. This is attributed to the existence of machinable additives. The inclusions might be composed of MnS. Sulfur and copper addition contributes to the improvement of the machinability of austenitic stainless steel. Bismuth is an important factor to improve the machinability of austenitic stainless steel, and it has a distinct advantage over lead. The mechanical properties of the free cutting austenitic stainless steel are similar to those of 1Cr18Ni9Ti. A new Pb-free austenitic stainless steel with high machinability as well as satisfactory mechanical properties has been developed.展开更多
Ti2AlC and Ti3AlC2 are the most light-weight and oxidation resistant layered ternary carbides belonging to the MAX phases.This review highlights recent achievements on the processing,microstructure,physical,mechanical...Ti2AlC and Ti3AlC2 are the most light-weight and oxidation resistant layered ternary carbides belonging to the MAX phases.This review highlights recent achievements on the processing,microstructure,physical,mechanical and chemical properties of these two machinable and electrically conductive carbides.Ti2AlC and Ti3AlC2 display superior properties such as fracture toughness,electrical and thermal conductivities,and oxidation resistance over their binary counterpart.This paper provides a comprehensive overview of the processing-microstructure-property correlations of these two carbides.Potential fields of applications for Ti2AlC and Ti3AlC2 are surveyed.In addition,we point out methods for further improving their properties in some specific applications through appropriate structural design and modification.展开更多
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie...Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.展开更多
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge...With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions.展开更多
Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesi...Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesian optimization model(B-RF)and the optimal model(Stacking model).These models are applied to a data set comprising 438 observations with five input variables,with the aim of predicting the compressive strength of reclaimed concrete.Furthermore,we evaluate the performance of the optimized models in comparison to traditional machine learning models,such as support vector regression(SVR),decision tree(DT),and random forest(RF).The results reveal that the Stacking model exhibits superior predictive performance,with evaluation indices including R2=0.825,MAE=2.818 and MSE=14.265,surpassing the traditional models.Moreover,we also performed a characteristic importance analysis on the input variables,and we concluded that cement had the greatest influence on the compressive strength of reclaimed concrete,followed by water.Therefore,the Stacking model can be recommended as a compressive strength prediction tool to partially replace laboratory compressive strength testing,resulting in time and cost savings.展开更多
In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive streng...In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive strength.In this study,505 groups of data were collected,and a new database of compressive strength of PFGC was constructed.In order to establish an accurate prediction model of compressive strength,five different types of machine learning networks were used for comparative analysis.The five machine learning models all showed good compressive strength prediction performance on PFGC.Among them,R2,MSE,RMSE and MAE of decision tree model(DT)are 0.99,1.58,1.25,and 0.25,respectively.While R2,MSE,RMSE and MAE of random forest model(RF)are 0.97,5.17,2.27 and 1.38,respectively.The two models have high prediction accuracy and outstanding generalization ability.In order to enhance the interpretability of model decision-making,we used importance ranking to obtain the perception of machine learning model to 13 variables.These 13 variables include chemical composition of fly ash(SiO_(2)/Al_(2)O_(3),Si/Al),the ratio of alkaline liquid to the binder,curing temperature,curing durations inside oven,fly ash dosage,fine aggregate dosage,coarse aggregate dosage,extra water dosage and sodium hydroxide dosage.Curing temperature,specimen ages and curing durations inside oven have the greatest influence on the prediction results,indicating that curing conditions have more prominent influence on the compressive strength of PFGC than ordinary Portland cement concrete.The importance of curing conditions of PFGC even exceeds that of the concrete mix proportion,due to the low reactivity of pure fly ash.展开更多
In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fi...In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study...BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.展开更多
Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transforma...Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.展开更多
The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for ident...The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods.展开更多
Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c...Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.展开更多
Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligen...Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligence.Among its various applications,it has proven groundbreaking in healthcare as well,both in clinical practice and research.In this editorial,we succinctly introduce ML applications and present a study,featured in the latest issue of the World Journal of Clinical Cases.The authors of this study conducted an analysis using both multiple linear regression(MLR)and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease(NAFLD).Their results implicated age as the most important determining factor in both groups,followed by lactic dehydrogenase,uric acid,forced expiratory volume in one second,and albumin.In addition,for the NAFLD-group,the 5th and 6th most important impact factors were thyroid-stimulating hormone and systolic blood pressure,as compared to plasma calcium and body fat for the NAFLD+group.However,the study's distinctive contribution lies in its adoption of ML methodologies,showcasing their superiority over traditional statistical approaches(herein MLR),thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
基金Supported by Japan Society for the Promotion of Science(Grant Nos.14J04115,16K17990)
文摘Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features.
基金supported in part by National Natural Science Foundation of China(Nos.50937004,50777051)NSFC-JSPS Joint Project(50911140103)
文摘For pulsed power devices, surface flashover phenomena across solid insulators greatly restrict their overall performance. In recent decades, much attention has been paid on enhancing the surface electric withstanding strength of insulators, and it is found that surface treatment of material is useful to improve the surface flashover voltage. The carburization treatment is employed to modify the surface components of newly-developed machinable ceramics (MC) materials. A series of MC samples with different glucose solution concentration (0%, 10%, 20%, 30% and 40%) are prepared by chemical reactions for surface carburization modification, and their surface fiashover characteristics are investigated under pulsed voltage in vacuum. It is found that the surface carburization treatment greatly modifies the surface resistivity of MCs and hence the flashover behaviors. Based on the reduction of surface resistivity and the secondary electron emission avalanche (SEEA) theory, the adjustment of flashover withstanding ability can be reasonably explained.
文摘A new type of machinable bioactive glass-ceramics for bone substitution has been developed in the glass system SiO_2-MgO-K_2O-F^--CaO-P_2O_5, which contains Mg- muscovite [K_2Mg_5 (Si_8O_(20)) F_4] and fluorapatite as the two main crystal phases. The phase separation and the crystallization of the glass have been studied. A series of tests have showed that the material is good at mechanical property and bioactivity. Espe- cially, by analysing the structure of the interface layer between the material and the bone of animal with scanning electron microscope, electron probe, etc., it has been found that the new bone hydroxya- patite is formed on the surface of the material so that the material is connected firmly with the bone.
文摘The present paper discusses the development of the first and second order model for predicting the chemical etching variables, namely, etching rate, surface roughness and accuracy of advanced ceramics. The first and second order etching rate, surface roughness and accuracy equations were developed using the Response Surface Method (RSM). The etching variables included etching temperature, etching duration, solution and solution concentration. The predictive models’ analyses were supported with the aid of the statistical software package – Design Expert (DE 7). The effects of the individual etching variables and interaction between these variables were also investigated. The study showed that predictive models successfully predicted the etching rate, surface roughness and accuracy readings recorded experimentally with 95% confident interval. The results obtained from the predictive models were also compared with Multilayer Perceptron Artificial Neural Network (ANN). Chemical Etching variables predictive by ANN were in good agreement with those with those obtained by RSM. This observation indicated the potential of ANN in predicting chemical etching variables thus eliminating the need for exhaustive chemical etching in optimization.
文摘A machinable Y TZP/LaPO 4 composite ceramic was prepared by infiltrating LaPO 4 liquid precursor into Y TZP porous ceramic. Sintered Y TZP ceramic preformed with 35% (volume fraction) open pore volume was made by adding graphite (30%, volume fraction). The Y TZP/LaPO 4 composite ceramics containing different LaPO 4 contents were obtained by infiltration and pyrolysis cycles. The machinability and mechanical properties of materials were investigated. The results show that the machinable Y TZP/LaPO 4 composite ceramics containing 2 3% to 7.5% (volume fraction) LaPO 4 has good machinability as well as outstanding mechanical properties.
文摘The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method. The composite sol was then transformed into gel by aging under different temperatures. The gel was dried finally by super critically drying method and sintered to obtain the machinable bioactive glass-ceramics. Effect of thermal treatment on crystallization of the glass-ceramics was investigated by X-ray diffraction ( XRD ) analysis. Microstructure of the glass- ceramics was observed by Scanning Electron Microscopy (SEM) and the mechanism of machinability was discussed. Phlogopite and hydroxylapatite were identified as main crystal phases by XRD analysis under thermal treatment at 750℃ and 950℃ for 1.5 h separately. The relative bulk density could achieve 99% under 1050℃ for 4 h. Microstructure of the glass-ceramics showed that the randomly distributed phlogopite and hydroxylapatite phases were favorable to the machinability of the glass-ceramics. A mean bending strength of about 160- 180 MPa and a fracture toughness parameter KIC of aboat 2.1-2.3 were determined for the glass-ceramics.
基金Item Sponsored by National Natural Science Foundation of China (50334010)
文摘The machinability tests were conducted by using various process parameters on a CA6164 lathe with a dynamometer. The metallurgical properties, machinability and mechanical properties of the developed alloy were compared with those of an austenite stainless steel 1Cr18Ni9Ti. The results show that the machinability of the austenitic stainless steels with free cutting additives is much better than that of 1Cr18Ni9Ti. This is attributed to the existence of machinable additives. The inclusions might be composed of MnS. Sulfur and copper addition contributes to the improvement of the machinability of austenitic stainless steel. Bismuth is an important factor to improve the machinability of austenitic stainless steel, and it has a distinct advantage over lead. The mechanical properties of the free cutting austenitic stainless steel are similar to those of 1Cr18Ni9Ti. A new Pb-free austenitic stainless steel with high machinability as well as satisfactory mechanical properties has been developed.
基金funded by the National Natural Science Foundation of China (NSFC) under Grant Nos. 50802097,50832008the IMR Innovative Research Foundation
文摘Ti2AlC and Ti3AlC2 are the most light-weight and oxidation resistant layered ternary carbides belonging to the MAX phases.This review highlights recent achievements on the processing,microstructure,physical,mechanical and chemical properties of these two machinable and electrically conductive carbides.Ti2AlC and Ti3AlC2 display superior properties such as fracture toughness,electrical and thermal conductivities,and oxidation resistance over their binary counterpart.This paper provides a comprehensive overview of the processing-microstructure-property correlations of these two carbides.Potential fields of applications for Ti2AlC and Ti3AlC2 are surveyed.In addition,we point out methods for further improving their properties in some specific applications through appropriate structural design and modification.
基金supported by the Deanship of Graduate Studies and Scientific Research at University of Bisha for funding this research through the promising program under grant number(UB-Promising-33-1445).
文摘Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
基金supported by the Shandong Province Science and Technology Project(2023TSGC0509,2022TSGC2234)Qingdao Science and Technology Plan Project(23-1-5-yqpy-2-qy)Open Topic Grants of Anhui Province Key Laboratory of Intelligent Building&Building Energy Saving,Anhui Jianzhu University(IBES2024KF08).
文摘With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions.
基金Funded by China National Key Research and Development Program for Application and Verification of Typical Groundwater Contaminated Sites(No.2019YFC1804805)Shenyang Key Laboratory of Safety Evaluation and Disaster Prevention of Engineering Structures(No.S230184)the Funding Project of Northeast Geological S&T Innovation Center of China Geological Survey(No.QCJJ2023-39)。
文摘Traditional machine learning(ML)encounters the challenge of parameter adjustment when predicting the compressive strength of reclaimed concrete.To address this issue,we introduce two optimized hybrid models:the Bayesian optimization model(B-RF)and the optimal model(Stacking model).These models are applied to a data set comprising 438 observations with five input variables,with the aim of predicting the compressive strength of reclaimed concrete.Furthermore,we evaluate the performance of the optimized models in comparison to traditional machine learning models,such as support vector regression(SVR),decision tree(DT),and random forest(RF).The results reveal that the Stacking model exhibits superior predictive performance,with evaluation indices including R2=0.825,MAE=2.818 and MSE=14.265,surpassing the traditional models.Moreover,we also performed a characteristic importance analysis on the input variables,and we concluded that cement had the greatest influence on the compressive strength of reclaimed concrete,followed by water.Therefore,the Stacking model can be recommended as a compressive strength prediction tool to partially replace laboratory compressive strength testing,resulting in time and cost savings.
基金Funded by the Natural Science Foundation of China(No.52109168)。
文摘In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive strength.In this study,505 groups of data were collected,and a new database of compressive strength of PFGC was constructed.In order to establish an accurate prediction model of compressive strength,five different types of machine learning networks were used for comparative analysis.The five machine learning models all showed good compressive strength prediction performance on PFGC.Among them,R2,MSE,RMSE and MAE of decision tree model(DT)are 0.99,1.58,1.25,and 0.25,respectively.While R2,MSE,RMSE and MAE of random forest model(RF)are 0.97,5.17,2.27 and 1.38,respectively.The two models have high prediction accuracy and outstanding generalization ability.In order to enhance the interpretability of model decision-making,we used importance ranking to obtain the perception of machine learning model to 13 variables.These 13 variables include chemical composition of fly ash(SiO_(2)/Al_(2)O_(3),Si/Al),the ratio of alkaline liquid to the binder,curing temperature,curing durations inside oven,fly ash dosage,fine aggregate dosage,coarse aggregate dosage,extra water dosage and sodium hydroxide dosage.Curing temperature,specimen ages and curing durations inside oven have the greatest influence on the prediction results,indicating that curing conditions have more prominent influence on the compressive strength of PFGC than ordinary Portland cement concrete.The importance of curing conditions of PFGC even exceeds that of the concrete mix proportion,due to the low reactivity of pure fly ash.
文摘In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
文摘BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.
文摘Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.
文摘The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods.
基金supported by the National Key R&D Program of China [grant number 2023YFF0805202]the National Natural Science Foun-dation of China [grant number 42175045]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB42000000]。
文摘Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.
文摘Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligence.Among its various applications,it has proven groundbreaking in healthcare as well,both in clinical practice and research.In this editorial,we succinctly introduce ML applications and present a study,featured in the latest issue of the World Journal of Clinical Cases.The authors of this study conducted an analysis using both multiple linear regression(MLR)and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease(NAFLD).Their results implicated age as the most important determining factor in both groups,followed by lactic dehydrogenase,uric acid,forced expiratory volume in one second,and albumin.In addition,for the NAFLD-group,the 5th and 6th most important impact factors were thyroid-stimulating hormone and systolic blood pressure,as compared to plasma calcium and body fat for the NAFLD+group.However,the study's distinctive contribution lies in its adoption of ML methodologies,showcasing their superiority over traditional statistical approaches(herein MLR),thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.