Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as...Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as an effective approach.This paper puts forwards a multi-objective stochastic parallel machine scheduling problem with the consideration of deteriorating and learning effects.In it,the real processing time of jobs is calculated by using their processing speed and normal processing time.To describe this problem in a mathematical way,amultiobjective stochastic programming model aiming at realizing makespan and energy consumption minimization is formulated.Furthermore,we develop a multi-objective multi-verse optimization combined with a stochastic simulation method to deal with it.In this approach,the multi-verse optimization is adopted to find favorable solutions from the huge solution domain,while the stochastic simulation method is employed to assess them.By conducting comparison experiments on test problems,it can be verified that the developed approach has better performance in coping with the considered problem,compared to two classic multi-objective evolutionary algorithms.展开更多
At present,there are few security models which control the communication between virtual machines (VMs).Moreover,these models are not applicable to multi-level security (MLS).In order to implement mandatory access con...At present,there are few security models which control the communication between virtual machines (VMs).Moreover,these models are not applicable to multi-level security (MLS).In order to implement mandatory access control (MAC) and MLS in virtual machine system,this paper designs Virt-BLP model,which is based on BLP model.For the distinction between virtual machine system and non-virtualized system,we build elements and security axioms of Virt-BLP model by modifying those of BLP.Moreover,comparing with BLP,the number of state transition rules of Virt-BLP is reduced accordingly and some rules can only be enforced by trusted subject.As a result,Virt-BLP model supports MAC and partial discretionary access control (DAC),well satisfying the requirement of MLS in virtual machine system.As space is limited,the implementation of our MAC framework will be shown in a continuation.展开更多
The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor a...The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.展开更多
A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage me...A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage mechanism, in order to provide a powerful programmable drive system. To achieve design objectives, a control system is required. To design a better control system and analyze the performance of an HM, a dynamic model is necessary. This paper first develops a dynamic model of an HM with a five-bar mechanism using a Lagrangian formulation. Then, several important properties which are very useful in system analysis, and control system design, are presented. Based on the developed dynamic model, two control approaches, computed torque, and combined computed torque and slide mode control, are adopted to control the HM system. Simulation results demonstrate the control performance and limitations of each control approach.展开更多
This paper researches the main technology of open CNC engraving machine, the DXF identification technology. Agraphic information extraction method is proposed. By this method, the graphic information in DXF file can b...This paper researches the main technology of open CNC engraving machine, the DXF identification technology. Agraphic information extraction method is proposed. By this method, the graphic information in DXF file can be identified and transformed into bottom motion controller’s code. So the engraving machine can achieve trajectory tracking. Then the open CNC engraving machine system is developed with C#. At last, the method is validated on a three axes motion experiment platform. The result shows that this method can efficiently identify the graphic information including line, circle, arc etc. in DXF file and the CNC engraving machine can be controlled well.展开更多
The design of large-scale machine system is a very complex problem.These design problems usually have a lot of design variables and constraints so that they are difficult to be solved rapidly and efficiently by using ...The design of large-scale machine system is a very complex problem.These design problems usually have a lot of design variables and constraints so that they are difficult to be solved rapidly and efficiently by using conventional methods.In this paper,a new multilevel design method oriented network environment is proposed,which maps the design problem of large-scale machine system into a hypergraph with degree of linking strength (DLS) between vertices.By decomposition of hypergraph,this method can divide the complex design problem into some small and simple subproblems that can be solved concurrently in a network.展开更多
In our earlier paper,power system stabilizers (PSSs) are designed for a nine-machine system,a new pole-placement tech-nique is developed for the design,and participation factors are used to decide how many stabilizers...In our earlier paper,power system stabilizers (PSSs) are designed for a nine-machine system,a new pole-placement tech-nique is developed for the design,and participation factors are used to decide how many stabilizers are required and where they shall be.Eachmachine being represented by a low-order linear model,there is some reservation of the results.In this paper,extensive transient simulationsare performed and each machine is represented by a high-order nonlinear model.Coherent groups are found.A weighted speed deviationindex (SDI) is defined to find out the most unstable machines in the system.PSSs are designed after the decisions of PSS number and sites.Transient simulations are carried out again for the closed-loop system.A system stability index (SSI) is used to evaluate the stability of theclosed-loop system.It is found that three PSSs are sufficient to ensure the stability of the nine-machine system.展开更多
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the...The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.展开更多
BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p...BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.展开更多
Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic outbreaks.This review discusses the current state of SM...Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic outbreaks.This review discusses the current state of SM-based surveillance methods for early epidemic outbreaks and the role of ML and DL in enhancing their performance.Since,every year,a large amount of data related to epidemic outbreaks,particularly Twitter data is generated by SM.This paper outlines the theme of SM analysis for tracking health-related issues and detecting epidemic outbreaks in SM,along with the ML and DL techniques that have been configured for the detection of epidemic outbreaks.DL has emerged as a promising ML technique that adaptsmultiple layers of representations or features of the data and yields state-of-the-art extrapolation results.In recent years,along with the success of ML and DL in many other application domains,both ML and DL are also popularly used in SM analysis.This paper aims to provide an overview of epidemic outbreaks in SM and then outlines a comprehensive analysis of ML and DL approaches and their existing applications in SM analysis.Finally,this review serves the purpose of offering suggestions,ideas,and proposals,along with highlighting the ongoing challenges in the field of early outbreak detection that still need to be addressed.展开更多
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no...Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.展开更多
Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to...Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to managing SPL variability,underscoring the critical importance of robust cybersecurity measures.This paper advocates for leveraging machine learning(ML)to address variability management issues and fortify the security of SPL.In the context of the broader special issue theme on innovative cybersecurity approaches,our proposed ML-based framework offers an interdisciplinary perspective,blending insights from computing,social sciences,and business.Specifically,it employs ML for demand analysis,dynamic feature extraction,and enhanced feature selection in distributed settings,contributing to cyber-resilient ecosystems.Our experiments demonstrate the framework’s superiority,emphasizing its potential to boost productivity and security in SPLs.As digital threats evolve,this research catalyzes interdisciplinary collaborations,aligning with the special issue’s goal of breaking down academic barriers to strengthen digital ecosystems against sophisticated attacks while upholding ethics,privacy,and human values.展开更多
In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the...In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.展开更多
We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for m...We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.展开更多
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma...Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.展开更多
This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning ap...This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning.Significant improvements were observed across various models,with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score,recall,and precision.The study underscores the critical role of tailored hyperparameter tuning in optimizing these models,revealing diverse outcomes among algorithms.Decision Trees and Random Forests exhibited stable performance throughout the evaluation.While enhancing accuracy,hyperparameter optimization also led to increased execution time.Visual representations and comprehensive results support the findings,confirming the hypothesis that optimizing parameters can effectively enhance predictive capabilities in cardiovascular disease.This research contributes to advancing the understanding and application of machine learning in healthcare,particularly in improving predictive accuracy for cardiovascular disease management and intervention strategies.展开更多
In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,...In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,which has led to the exploration of blockchain technology.Blockchain leverages its transparency and immutability to record the provenance and reliability of training data.However,storing massive datasets or implementing model evaluation processes on smart contracts incurs high computational costs.Additionally,current research on preventing malicious contributions in DML systems primarily focuses on protecting models from being exploited by workers who contribute incorrect or misleading data.However,less attention has been paid to the scenario where malicious requesters intentionally manipulate test data during evaluation to gain an unfair advantage.This paper proposes a transparent and accountable training data sharing method that securely shares data among potentially malicious system participants.First,we introduce a blockchain-based DML system architecture that supports secure training data sharing through the IPFS network.Second,we design a blockchain smart contract to transparently split training datasets into training and test datasets,respectively,without involving system participants.Under the system,transparent and accountable training data sharing can be achieved with attribute-based proxy re-encryption.We demonstrate the security analysis for the system,and conduct experiments on the Ethereum and IPFS platforms to show the feasibility and practicality of the system.展开更多
Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more qual...Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand.The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization,minimize energy costs without affecting production,and minimize environmental effects.Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings,which necessitates energy optimization and increased user comfort.To address the issue of energy management,many researchers have developed various frameworks;while the objective of each framework was to sustain a balance between user comfort and energy consumption,this problem hasn’t been fully solved because of how difficult it is to solve it.An inclusive and Intelligent Energy Management System(IEMS)aims to provide overall energy efficiency regarding increased power generation,increase flexibility,increase renewable generation systems,improve energy consumption,reduce carbon dioxide emissions,improve stability,and reduce energy costs.Machine Learning(ML)is an emerging approach that may be beneficial to predict energy efficiency in a better way with the assistance of the Internet of Energy(IoE)network.The IoE network is playing a vital role in the energy sector for collecting effective data and usage,resulting in smart resource management.In this research work,an IEMS is proposed for Smart Cities(SC)using the ML technique to better resolve the energy management problem.The proposed system minimized the energy consumption with its intelligent nature and provided better outcomes than the previous approaches in terms of 92.11% accuracy,and 7.89% miss-rate.展开更多
The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber threats.Among the myriad of potential...The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber threats.Among the myriad of potential attacks,Denial of Service(DoS)attacks and Distributed Denial of Service(DDoS)attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic.As IoT devices often lack the inherent security measures found in more mature computing platforms,the need for robust DoS/DDoS detection systems tailored to IoT is paramount for the sustainable development of every domain that IoT serves.In this study,we investigate the effectiveness of three machine learning(ML)algorithms:extreme gradient boosting(XGB),multilayer perceptron(MLP)and random forest(RF),for the detection of IoTtargeted DoS/DDoS attacks and three feature engineering methods that have not been used in the existing stateof-the-art,and then employed the best performing algorithm to design a prototype of a novel real-time system towards detection of such DoS/DDoS attacks.The CICIoT2023 dataset was derived from the latest real-world IoT traffic,incorporates both benign and malicious network traffic patterns and after data preprocessing and feature engineering,the data was fed into our models for both training and validation,where findings suggest that while all threemodels exhibit commendable accuracy in detectingDoS/DDoS attacks,the use of particle swarmoptimization(PSO)for feature selection has made great improvements in the performance(accuracy,precsion recall and F1-score of 99.93%for XGB)of the ML models and their execution time(491.023 sceonds for XGB)compared to recursive feature elimination(RFE)and randomforest feature importance(RFI)methods.The proposed real-time system for DoS/DDoS attack detection entails the implementation of an platform capable of effectively processing and analyzing network traffic in real-time.This involvesemploying the best-performing ML algorithmfor detection and the integration of warning mechanisms.We believe this approach will significantly enhance the field of security research and continue to refine it based on future insights and developments.展开更多
As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have pro...As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.展开更多
文摘Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as an effective approach.This paper puts forwards a multi-objective stochastic parallel machine scheduling problem with the consideration of deteriorating and learning effects.In it,the real processing time of jobs is calculated by using their processing speed and normal processing time.To describe this problem in a mathematical way,amultiobjective stochastic programming model aiming at realizing makespan and energy consumption minimization is formulated.Furthermore,we develop a multi-objective multi-verse optimization combined with a stochastic simulation method to deal with it.In this approach,the multi-verse optimization is adopted to find favorable solutions from the huge solution domain,while the stochastic simulation method is employed to assess them.By conducting comparison experiments on test problems,it can be verified that the developed approach has better performance in coping with the considered problem,compared to two classic multi-objective evolutionary algorithms.
基金Acknowledgements This work was supported by National Key Basic Research and Development Plan (973 Plan) of China (No. 2007CB310900) and National Natural Science Foundation of China (No. 90612018, 90715030 and 60970008).
文摘At present,there are few security models which control the communication between virtual machines (VMs).Moreover,these models are not applicable to multi-level security (MLS).In order to implement mandatory access control (MAC) and MLS in virtual machine system,this paper designs Virt-BLP model,which is based on BLP model.For the distinction between virtual machine system and non-virtualized system,we build elements and security axioms of Virt-BLP model by modifying those of BLP.Moreover,comparing with BLP,the number of state transition rules of Virt-BLP is reduced accordingly and some rules can only be enforced by trusted subject.As a result,Virt-BLP model supports MAC and partial discretionary access control (DAC),well satisfying the requirement of MLS in virtual machine system.As space is limited,the implementation of our MAC framework will be shown in a continuation.
基金supported in part by the Jiangsu Natural Science Foundation of China under Grant BK20180013in part by the Shenzhen Science and Technology Innovation Committee(STIC)under Grant JCYJ20180306174439784.
文摘The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.
基金The work was supported in part by the EPSRC research council(No. GR/M29108/01).
文摘A hybrid machine (HM) as a typical mechatronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechnical linkage mechanism, in order to provide a powerful programmable drive system. To achieve design objectives, a control system is required. To design a better control system and analyze the performance of an HM, a dynamic model is necessary. This paper first develops a dynamic model of an HM with a five-bar mechanism using a Lagrangian formulation. Then, several important properties which are very useful in system analysis, and control system design, are presented. Based on the developed dynamic model, two control approaches, computed torque, and combined computed torque and slide mode control, are adopted to control the HM system. Simulation results demonstrate the control performance and limitations of each control approach.
文摘This paper researches the main technology of open CNC engraving machine, the DXF identification technology. Agraphic information extraction method is proposed. By this method, the graphic information in DXF file can be identified and transformed into bottom motion controller’s code. So the engraving machine can achieve trajectory tracking. Then the open CNC engraving machine system is developed with C#. At last, the method is validated on a three axes motion experiment platform. The result shows that this method can efficiently identify the graphic information including line, circle, arc etc. in DXF file and the CNC engraving machine can be controlled well.
文摘The design of large-scale machine system is a very complex problem.These design problems usually have a lot of design variables and constraints so that they are difficult to be solved rapidly and efficiently by using conventional methods.In this paper,a new multilevel design method oriented network environment is proposed,which maps the design problem of large-scale machine system into a hypergraph with degree of linking strength (DLS) between vertices.By decomposition of hypergraph,this method can divide the complex design problem into some small and simple subproblems that can be solved concurrently in a network.
文摘In our earlier paper,power system stabilizers (PSSs) are designed for a nine-machine system,a new pole-placement tech-nique is developed for the design,and participation factors are used to decide how many stabilizers are required and where they shall be.Eachmachine being represented by a low-order linear model,there is some reservation of the results.In this paper,extensive transient simulationsare performed and each machine is represented by a high-order nonlinear model.Coherent groups are found.A weighted speed deviationindex (SDI) is defined to find out the most unstable machines in the system.PSSs are designed after the decisions of PSS number and sites.Transient simulations are carried out again for the closed-loop system.A system stability index (SSI) is used to evaluate the stability of theclosed-loop system.It is found that three PSSs are sufficient to ensure the stability of the nine-machine system.
文摘The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.
文摘BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.
基金authors are thankful to the Deanship of Scientific Research at Najran University for funding this work,under the Research Groups Funding Program Grant Code(NU/RG/SERC/12/27).
文摘Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic outbreaks.This review discusses the current state of SM-based surveillance methods for early epidemic outbreaks and the role of ML and DL in enhancing their performance.Since,every year,a large amount of data related to epidemic outbreaks,particularly Twitter data is generated by SM.This paper outlines the theme of SM analysis for tracking health-related issues and detecting epidemic outbreaks in SM,along with the ML and DL techniques that have been configured for the detection of epidemic outbreaks.DL has emerged as a promising ML technique that adaptsmultiple layers of representations or features of the data and yields state-of-the-art extrapolation results.In recent years,along with the success of ML and DL in many other application domains,both ML and DL are also popularly used in SM analysis.This paper aims to provide an overview of epidemic outbreaks in SM and then outlines a comprehensive analysis of ML and DL approaches and their existing applications in SM analysis.Finally,this review serves the purpose of offering suggestions,ideas,and proposals,along with highlighting the ongoing challenges in the field of early outbreak detection that still need to be addressed.
基金Supported by National Natural Science Foundation of China (Grant No.51975294)Fundamental Research Funds for the Central Universities of China (Grant No.30922010706)。
文摘Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers.
基金supported via funding from Ministry of Defense,Government of Pakistan under Project Number AHQ/95013/6/4/8/NASTP(ACP).Titled:Development of ICT and Artificial Intelligence Based Precision Agriculture Systems Utilizing Dual-Use Aerospace Technologies-GREENAI.
文摘Embracing software product lines(SPLs)is pivotal in the dynamic landscape of contemporary software devel-opment.However,the flexibility and global distribution inherent in modern systems pose significant challenges to managing SPL variability,underscoring the critical importance of robust cybersecurity measures.This paper advocates for leveraging machine learning(ML)to address variability management issues and fortify the security of SPL.In the context of the broader special issue theme on innovative cybersecurity approaches,our proposed ML-based framework offers an interdisciplinary perspective,blending insights from computing,social sciences,and business.Specifically,it employs ML for demand analysis,dynamic feature extraction,and enhanced feature selection in distributed settings,contributing to cyber-resilient ecosystems.Our experiments demonstrate the framework’s superiority,emphasizing its potential to boost productivity and security in SPLs.As digital threats evolve,this research catalyzes interdisciplinary collaborations,aligning with the special issue’s goal of breaking down academic barriers to strengthen digital ecosystems against sophisticated attacks while upholding ethics,privacy,and human values.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFE0129800)the National Natural Science Foundation of China(Grant No.42202204)。
文摘In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.
基金Project supported by the Natural Science Foundation of Jiangsu Province (Grant No.BK20220917)the National Natural Science Foundation of China (Grant Nos.12001213 and 12302035)。
文摘We present a large deviation theory that characterizes the exponential estimate for rare events in stochastic dynamical systems in the limit of weak noise.We aim to consider a next-to-leading-order approximation for more accurate calculation of the mean exit time by computing large deviation prefactors with the aid of machine learning.More specifically,we design a neural network framework to compute quasipotential,most probable paths and prefactors based on the orthogonal decomposition of a vector field.We corroborate the higher effectiveness and accuracy of our algorithm with two toy models.Numerical experiments demonstrate its powerful functionality in exploring the internal mechanism of rare events triggered by weak random fluctuations.
文摘Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU),Grant Number IMSIU-RG23151.
文摘This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning.Significant improvements were observed across various models,with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score,recall,and precision.The study underscores the critical role of tailored hyperparameter tuning in optimizing these models,revealing diverse outcomes among algorithms.Decision Trees and Random Forests exhibited stable performance throughout the evaluation.While enhancing accuracy,hyperparameter optimization also led to increased execution time.Visual representations and comprehensive results support the findings,confirming the hypothesis that optimizing parameters can effectively enhance predictive capabilities in cardiovascular disease.This research contributes to advancing the understanding and application of machine learning in healthcare,particularly in improving predictive accuracy for cardiovascular disease management and intervention strategies.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley support program(2023-DD-RD-0152)supervised by the Innovation Foundation.It was also partially supported by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2024-2020-0-01797)supervised by the Institute for Information&Communications Technology Planning&Evaluation(IITP).
文摘In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,which has led to the exploration of blockchain technology.Blockchain leverages its transparency and immutability to record the provenance and reliability of training data.However,storing massive datasets or implementing model evaluation processes on smart contracts incurs high computational costs.Additionally,current research on preventing malicious contributions in DML systems primarily focuses on protecting models from being exploited by workers who contribute incorrect or misleading data.However,less attention has been paid to the scenario where malicious requesters intentionally manipulate test data during evaluation to gain an unfair advantage.This paper proposes a transparent and accountable training data sharing method that securely shares data among potentially malicious system participants.First,we introduce a blockchain-based DML system architecture that supports secure training data sharing through the IPFS network.Second,we design a blockchain smart contract to transparently split training datasets into training and test datasets,respectively,without involving system participants.Under the system,transparent and accountable training data sharing can be achieved with attribute-based proxy re-encryption.We demonstrate the security analysis for the system,and conduct experiments on the Ethereum and IPFS platforms to show the feasibility and practicality of the system.
文摘Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand.The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization,minimize energy costs without affecting production,and minimize environmental effects.Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings,which necessitates energy optimization and increased user comfort.To address the issue of energy management,many researchers have developed various frameworks;while the objective of each framework was to sustain a balance between user comfort and energy consumption,this problem hasn’t been fully solved because of how difficult it is to solve it.An inclusive and Intelligent Energy Management System(IEMS)aims to provide overall energy efficiency regarding increased power generation,increase flexibility,increase renewable generation systems,improve energy consumption,reduce carbon dioxide emissions,improve stability,and reduce energy costs.Machine Learning(ML)is an emerging approach that may be beneficial to predict energy efficiency in a better way with the assistance of the Internet of Energy(IoE)network.The IoE network is playing a vital role in the energy sector for collecting effective data and usage,resulting in smart resource management.In this research work,an IEMS is proposed for Smart Cities(SC)using the ML technique to better resolve the energy management problem.The proposed system minimized the energy consumption with its intelligent nature and provided better outcomes than the previous approaches in terms of 92.11% accuracy,and 7.89% miss-rate.
文摘The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber threats.Among the myriad of potential attacks,Denial of Service(DoS)attacks and Distributed Denial of Service(DDoS)attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic.As IoT devices often lack the inherent security measures found in more mature computing platforms,the need for robust DoS/DDoS detection systems tailored to IoT is paramount for the sustainable development of every domain that IoT serves.In this study,we investigate the effectiveness of three machine learning(ML)algorithms:extreme gradient boosting(XGB),multilayer perceptron(MLP)and random forest(RF),for the detection of IoTtargeted DoS/DDoS attacks and three feature engineering methods that have not been used in the existing stateof-the-art,and then employed the best performing algorithm to design a prototype of a novel real-time system towards detection of such DoS/DDoS attacks.The CICIoT2023 dataset was derived from the latest real-world IoT traffic,incorporates both benign and malicious network traffic patterns and after data preprocessing and feature engineering,the data was fed into our models for both training and validation,where findings suggest that while all threemodels exhibit commendable accuracy in detectingDoS/DDoS attacks,the use of particle swarmoptimization(PSO)for feature selection has made great improvements in the performance(accuracy,precsion recall and F1-score of 99.93%for XGB)of the ML models and their execution time(491.023 sceonds for XGB)compared to recursive feature elimination(RFE)and randomforest feature importance(RFI)methods.The proposed real-time system for DoS/DDoS attack detection entails the implementation of an platform capable of effectively processing and analyzing network traffic in real-time.This involvesemploying the best-performing ML algorithmfor detection and the integration of warning mechanisms.We believe this approach will significantly enhance the field of security research and continue to refine it based on future insights and developments.
基金Qinglan Project of Jiangsu Province of China,Grant/Award Number:BK20180820National Natural Science Foundation of China,Grant/Award Numbers:12271255,61701243,71771125,72271126,12227808+2 种基金Major Projects of Natural Sciences of University in Jiangsu Province of China,Grant/Award Numbers:21KJA630001,22KJA630001Postgraduate Research and Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23_2343supported by the National Natural Science Foundation of China(no.72271126,12271255,61701243,71771125,12227808)。
文摘As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.