Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 fr...Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives.More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science(WoS)Core Collection database last year.The bibliometric analyses show that the traditional structural Mg alloys,functional Mg materials,and corrosion and protection of Mg alloys are still the main research focus.Therefore,this review paper mainly focuses on the research progress of Mg cast alloys,Mg wrought alloys,bio-magnesium alloys,Mg-based energy storage materials,corrosion and protection of Mg alloys in 2023.In addition,future research directions are proposed based on the challenges and obstacles identified throughout this review.展开更多
Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg...Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg(OH)_(2)layer,especially that formed in a natural condition,cannot provide desirable corrosion resistance in the community of corrosion and protection.Here,several Mg(OH)_(2)coatings were prepared by changing the pH values of sodium hydroxide solutions.These coatings were composed of innumerable nanoplatelets with different orientations and showed distinguished capability in corrosion resistance.The nanoplatelets were well-oriented with their ab-planes parallel to,instead of perpendicular to,the magnesium alloy surface by raising the pH value to 14.0.This specific orientation resulted in the optimal coating showing long-term corrosion protection in both in vitro and in vivo environments and good osteogenic capability.These finds manifest that the environment-friendly Mg(OH)_(2)coating can also provide comparable and better corrosion protection than many traditional chemical conversion films(such as phosphate,and fluoride).展开更多
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties...More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys still are the main research focus.Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Significant contributions to the research and development of magnesium alloys were made by Chongqing University,Shanghai Jiaotong University,and Chinese Academy of Sciences in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the United States,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,etc..This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2021.Based on the issues and challenges identified here,some future research directions are suggested.展开更多
More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical proper...More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys are still the main research focus.Bio-Mg materials,Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Notable contributions to the research and development of magnesium alloys were made by Chongqing University(>200 papers),Chinese Academy of Sciences,Shanghai Jiao Tong University,and Northeastern University(>100 papers)in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the USA,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,and National University of Singapore in Singapore,etc.This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2022.Based on the issues and challenges identified here,some future research directions are suggested.展开更多
Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation co...Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation coefficients,magnetic and electrical conductivities,as well as high theoretical specific capacity.However,magnesium alloys exhibit poor deformation ability due to their hexagonal close-packed crystal structure.Preparing magnesium and magnesium alloy foils with thicknesses of less than 0.1 mm is difficult because of surface oxidation and grain growth at high temperatures or severe anisotropy after cold rolling that leads to cracks.Numerous methods have been applied to prepare magnesium alloy foils.They include warm rolling,cold rolling,accumulative roll bonding,electric plastic rolling,and on-line heating rolling.Defects of magnesium and magnesium alloy foils during preparation,such as edge cracks and breakage,are important factors for consideration.Herein,the current status of the research on magnesium and magnesium alloy foils is summarized from the aspects of foil preparation,defect control,performance characterization,and application prospects.The advantages and disadvantages of different preparation methods and defect(edge cracks and breakage)mechanisms in the preparation of foils are identified.展开更多
Texture regulation is a prominent method to modify the mechanical properties and anisotropy of magnesium alloy.In this work,the Mg-1Al-0.3Ca-0.5Mn-0.2Gd(wt.%)alloy sheet with TD-tilted and circular texture was fabrica...Texture regulation is a prominent method to modify the mechanical properties and anisotropy of magnesium alloy.In this work,the Mg-1Al-0.3Ca-0.5Mn-0.2Gd(wt.%)alloy sheet with TD-tilted and circular texture was fabricated by unidirectional rolling(UR)and multidirectional rolling(MR)method,respectively.Unlike generating a strong in-plane mechanical anisotropy in conventional TD-tilted texture,the novel circular texture sample possessed a weak in-plane yield anisotropy.This can be rationalized by the similar proportion of soft grains with favorable orientation for basalslip and{10.12}tensile twinning during the uniaxial tension of circular-texture sample along different directions.Moreover,compared with the TD-tilted texture,the circular texture improved the elongation to failure both along the rolling direction(RD)and transverse direction(TD).By quasi-in-situ EBSD-assisted slip trace analysis,higher activation of basal slip was observed in the circular-texture sample during RD tension,contributing to its excellent ductility.When loading along the TD,the TD-tilted texture promoted the activation of{10.12}tensile twins significantly,thus providing nucleation sites for cracks and deteriorating the ductility.This research may shed new insights into the development of formable and ductile Mg alloy sheets by texture modification.展开更多
Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit...Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.展开更多
Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is...Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is dedicated to exploring the corrosion-fatigue mechanisms of these materials,with an emphasis on microscale processes,and the possibility of expanding current knowledge on this topic using scanning electrochemical techniques.The interaction between fatigue and corrosion of Mg alloys is analyzed by considering the microstructural aspects(grain size,precipitates,deformation twins),as well as the formation of pits.Furthermore,in the case of coated alloys,the role of coating defects in these phenomena is also described.In this context,the feasibility of using scanning electrochemical microscopy(SECM),scanning vibrating electrode technique(SVET),scanning ion-selective electrode technique(SIET),localized electrochemical impedance spectroscopy(LEIS)and scanning Kelvin probe(SKP)methods to study the corrosion-fatigue interaction of Mg alloys is examined.A comprehensive review of the current literature in this field is presented,and the opportunities and limitations of consolidating the use of these techniques to study the microscale processes involved in Mg corrosion-fatigue are discussed.展开更多
Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the ho...Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.展开更多
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The prepa...Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The preparation process parameters of magnesium alloy directly affect the microstructure of the magnesium alloy,and then determine the properties of the magnesium alloy.The cooling rate has important effects on the microstructure and properties of the magnesium alloy,and is an important preparation process parameter that cannot be ignored.Both the cooling rate from liquid phase to solid phase and the cooling rate of the magnesium alloy after heat treatment will change the microstructure of the magnesium alloy.Furthermore,the properties of magnesium alloy will be affected.In this paper,the effects of cooling rate on the solidification behavior,the rheological behavior,the change of microstructure(the solid solution of alloying elements in matrix,the composition,size,distribution and morphology of second phase,the diffusion and segregation of alloying elements,the grain size,the formation and morphology of dendrite,etc.),and the effects of cooling rate of magnesium alloy after heat treatment on the microstructure and stress distribution are reviewed.The reasons for the divergence about the influence of cooling rate on the microstructure of magnesium alloy are analyzed in detail.The effects of cooling rate on the mechanical properties,corrosion resistance and oxidation resistance of magnesium alloy are also analyzed and discussed deeply.Finally,the new methods and approaches to study the effects of cooling rate on the microstructure and properties of magnesium alloy are prospected.展开更多
This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.3...This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component.展开更多
Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi...Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.展开更多
Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryog...Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryogenic machining on the surface integrity(SI)characteristics of AZ91 magnesium alloy.Face milling using uncoated carbide inserts have been performed under liquid nitrogen(LN_(2))assisted cryogenic condition and compared with conventional(dry)milling.Experiments are performed using machining parameters in terms of cutting speeds of 325,475,625 m/min,feed rates of 0.05,0.1,0.15 mm/teeth and depth of cuts of 0.5,1,1.5 mm respectively.Most significant surface integrity characteristics such as surface roughness,microhardness,microstructure,and residual stresses have been investigated.Behaviour of SI characteristics with respect to milling parameters have been identified using statistical technique such as ANOVA and signal-to-noise(S/N)ratio plots.Additionally,the multi criteria decision making(MCDM)techniques such as additive ratio assessment method(ARAS)and complex proportional assessment(COPRAS)have been utilized to identify the optimal conditions for milling AZ91 magnesium alloy under both dry and cryogenic conditions.Use of LN_(2)during machining,resulted in reduction in machining temperature by upto 29%with a temperature drop from 251.2℃under dry condition to 178.5℃in cryogenic condition.Results showed the advantage of performing cryogenic milling in improving the surface integrity to a significant extent.Cryogenic machining considerably minimized the roughness by upto 28%and maximised the microhardness by upto 23%,when compared to dry machining.Cutting speed has caused significant impact on surface roughness(95.33%-dry,92.92%-cryogenic)and surface microhardness(80.33%-dry,82.15%-cryogenic).Due to the reduction in machining temperature,cryogenic condition resulted in compressive residual stresses(maximumσ║=-113 MPa)on the alloy surface.Results indicate no harm to alloy microstructure in both conditions,with no alterations to grain integrity and minimal reduction in the average grain sizes in the near machined area,when compared to before machined(base material)surface.The MCDM approach namely ARAS and COPRAS resulted in identical results,with the optimal condition being cutting speed of 625 m/min,a feed rate of 0.05 mm/teeth,and a depth of cut of 0.5 mm for both dry and cryogenic environments.展开更多
According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheolog...According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheological behaviors were predicted.The model exhibited relatively serious prediction distortion in the low-temperature and high-strain rate parameter interval,and its accuracy was still unsatisfactory even after modification by a correction operator considering the coupling of temperature and strain rate.The microstructure characterization and statistical analysis showed that a large number of twinning occurred in the parameter intervals with prediction deviation.The occurrence of twinning complicated the local internal stress distribution by drastically changing the crystal orientation and led to significant fluctuations in the macroscopic strain-stress and hardening curves relative to the rheological processes dominated by the dislocation and softening mechanisms,making the logarithm of the strain rate and stress deviate from the linear relationship.This twinning phenomenon was greatly influenced by the temperature and strain rate.Herein,the influence mechanism on twinning behavior was analyzed from the perspective of the interaction of dislocation and twinning.展开更多
The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (R...The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (RT).The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed.Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths;multiaxial ratchetting presents strong path dependence,and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional45°linear loading paths;multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase.Moreover,stress-strain curves show a convex and symmetrical shape in axial/torsional directions.Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles.The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys.展开更多
The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and arti...The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios.展开更多
Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vi...Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.展开更多
Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of...Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52171104,52371093,52471117 and 52225101)the National Key Research and Development Program of China(No.2021YFB3701100).
文摘Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives.More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science(WoS)Core Collection database last year.The bibliometric analyses show that the traditional structural Mg alloys,functional Mg materials,and corrosion and protection of Mg alloys are still the main research focus.Therefore,this review paper mainly focuses on the research progress of Mg cast alloys,Mg wrought alloys,bio-magnesium alloys,Mg-based energy storage materials,corrosion and protection of Mg alloys in 2023.In addition,future research directions are proposed based on the challenges and obstacles identified throughout this review.
基金supported by the National Natural Science Foundation of China(NSFC,52271073)the Sichuan Science and Technology Program(2024NSFJQ0034)+3 种基金the Central Government Guided Special Program(No.2021ZYD0049)the Young Elite Scientists Sponsorship Program by CAST(YESS,2018QNRC001)the GDPH Supporting Fund for Talent Program(KY0120220137)the Scientific and Technological Projects of Guangzhou,China(202002030283).
文摘Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg(OH)_(2)layer,especially that formed in a natural condition,cannot provide desirable corrosion resistance in the community of corrosion and protection.Here,several Mg(OH)_(2)coatings were prepared by changing the pH values of sodium hydroxide solutions.These coatings were composed of innumerable nanoplatelets with different orientations and showed distinguished capability in corrosion resistance.The nanoplatelets were well-oriented with their ab-planes parallel to,instead of perpendicular to,the magnesium alloy surface by raising the pH value to 14.0.This specific orientation resulted in the optimal coating showing long-term corrosion protection in both in vitro and in vivo environments and good osteogenic capability.These finds manifest that the environment-friendly Mg(OH)_(2)coating can also provide comparable and better corrosion protection than many traditional chemical conversion films(such as phosphate,and fluoride).
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金support from the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)National Natural Science Foundation of China(NSFC)(No.52071036)+1 种基金Key Research and Development Program of Zhejiang Province(No.2021C01086)the Fundamental Research Funds for the Central Universities Project(Nos.2021CDJCGJ009,SKLMT-ZZKT-2021M11)is also gratefully acknowledged.
文摘More than 4000 papers in the field of Mg and Mg alloys were published and indexed in Web of Science(WoS)Core Collection database in 2021.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys still are the main research focus.Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Significant contributions to the research and development of magnesium alloys were made by Chongqing University,Shanghai Jiaotong University,and Chinese Academy of Sciences in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the United States,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,etc..This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2021.Based on the issues and challenges identified here,some future research directions are suggested.
基金This work was financially supported by the National Key Research and Development Program of China(No.2021YFB3701100)the National Natural Science Foundation of China(Nos.52171104 and U20A20234)+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology,China(Nos.cstc2021ycjh-bgzxm0086 and 2019jcyj-msxmX0306)the fundamental Research funds for Central Universities,China(Nos.SKLMT-ZZKT-2022R04,2021CDJJMRH-001,and SKLMT-ZZKT-2022M12).
文摘More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys are still the main research focus.Bio-Mg materials,Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Notable contributions to the research and development of magnesium alloys were made by Chongqing University(>200 papers),Chinese Academy of Sciences,Shanghai Jiao Tong University,and Northeastern University(>100 papers)in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the USA,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,and National University of Singapore in Singapore,etc.This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2022.Based on the issues and challenges identified here,some future research directions are suggested.
基金financially supported by the National Key Research and Development Program of China(Nos.2022 YFB3709300 and 2021YFB3701000)the National Natural Science Foundation of China(Nos.52271090 and 52071036)+1 种基金the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030006)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(Nos.SKLMT-ZZKT-2022Z01 and S KLMT-ZZKT-2022M12)。
文摘Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation coefficients,magnetic and electrical conductivities,as well as high theoretical specific capacity.However,magnesium alloys exhibit poor deformation ability due to their hexagonal close-packed crystal structure.Preparing magnesium and magnesium alloy foils with thicknesses of less than 0.1 mm is difficult because of surface oxidation and grain growth at high temperatures or severe anisotropy after cold rolling that leads to cracks.Numerous methods have been applied to prepare magnesium alloy foils.They include warm rolling,cold rolling,accumulative roll bonding,electric plastic rolling,and on-line heating rolling.Defects of magnesium and magnesium alloy foils during preparation,such as edge cracks and breakage,are important factors for consideration.Herein,the current status of the research on magnesium and magnesium alloy foils is summarized from the aspects of foil preparation,defect control,performance characterization,and application prospects.The advantages and disadvantages of different preparation methods and defect(edge cracks and breakage)mechanisms in the preparation of foils are identified.
基金supports from The National Natural Science Foundation of China(nos.52222409,52074132,and U19A2084)The National Key Research and Development Program(no.2022YFE0122000)are greatly acknowledgedsupport from The Science and Technology Development Program of Jilin Province(no.20210301025GX).
文摘Texture regulation is a prominent method to modify the mechanical properties and anisotropy of magnesium alloy.In this work,the Mg-1Al-0.3Ca-0.5Mn-0.2Gd(wt.%)alloy sheet with TD-tilted and circular texture was fabricated by unidirectional rolling(UR)and multidirectional rolling(MR)method,respectively.Unlike generating a strong in-plane mechanical anisotropy in conventional TD-tilted texture,the novel circular texture sample possessed a weak in-plane yield anisotropy.This can be rationalized by the similar proportion of soft grains with favorable orientation for basalslip and{10.12}tensile twinning during the uniaxial tension of circular-texture sample along different directions.Moreover,compared with the TD-tilted texture,the circular texture improved the elongation to failure both along the rolling direction(RD)and transverse direction(TD).By quasi-in-situ EBSD-assisted slip trace analysis,higher activation of basal slip was observed in the circular-texture sample during RD tension,contributing to its excellent ductility.When loading along the TD,the TD-tilted texture promoted the activation of{10.12}tensile twins significantly,thus providing nucleation sites for cracks and deteriorating the ductility.This research may shed new insights into the development of formable and ductile Mg alloy sheets by texture modification.
基金supported by National Key Research and Development Program of China[2023YFB4605800]National Natural Science Foundation of China[51935014,52165043]+3 种基金JiangXi Provincial Natural Science Foundation of China[20224ACB204013,20224ACB214008]Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects[20225BCJ23008]Anhui Provincial Natural Science Foundation[2308085ME171]The University Synergy Innovation Program of Anhui Province[GXXT-2023-025,GXXT-2023-026].
文摘Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.
基金support provided by the Spanish Ministry of Science and Innovation(MICINN,Madrid,Spain)the European Regional Development Fund(Brussels,Belgium)MCIN/AEI/10.13039/501100011033/FEDER,UE under grant PID2021-127445NB-I00.
文摘Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is dedicated to exploring the corrosion-fatigue mechanisms of these materials,with an emphasis on microscale processes,and the possibility of expanding current knowledge on this topic using scanning electrochemical techniques.The interaction between fatigue and corrosion of Mg alloys is analyzed by considering the microstructural aspects(grain size,precipitates,deformation twins),as well as the formation of pits.Furthermore,in the case of coated alloys,the role of coating defects in these phenomena is also described.In this context,the feasibility of using scanning electrochemical microscopy(SECM),scanning vibrating electrode technique(SVET),scanning ion-selective electrode technique(SIET),localized electrochemical impedance spectroscopy(LEIS)and scanning Kelvin probe(SKP)methods to study the corrosion-fatigue interaction of Mg alloys is examined.A comprehensive review of the current literature in this field is presented,and the opportunities and limitations of consolidating the use of these techniques to study the microscale processes involved in Mg corrosion-fatigue are discussed.
基金National Natural Science Foundation of China No.51905068Natural Science Foundation of Liaoning Province No.2020-HYLH-24The open research fund from the State Key Laboratory of Rolling and Automation,Northeastern University No.2020RALKFKT012。
文摘Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner.
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.
基金supports from the Natural Science Foundation of Inner Mongolia Autonomous Region of china(2024MS05009)National Natural Science Foundation of China(51661025)+1 种基金Research Program of science and technology at Universities of Inner Mongolia Autonomous Region(NJZY21315)Scientific research project of Inner Mongolia University of Technology(ZY202001 and BS2020003).
文摘Magnesium alloy is one of the most widely used lightweight structural materials,and the development of high strength-toughness magnesium alloy is an important research field at present and even in the future.The preparation process parameters of magnesium alloy directly affect the microstructure of the magnesium alloy,and then determine the properties of the magnesium alloy.The cooling rate has important effects on the microstructure and properties of the magnesium alloy,and is an important preparation process parameter that cannot be ignored.Both the cooling rate from liquid phase to solid phase and the cooling rate of the magnesium alloy after heat treatment will change the microstructure of the magnesium alloy.Furthermore,the properties of magnesium alloy will be affected.In this paper,the effects of cooling rate on the solidification behavior,the rheological behavior,the change of microstructure(the solid solution of alloying elements in matrix,the composition,size,distribution and morphology of second phase,the diffusion and segregation of alloying elements,the grain size,the formation and morphology of dendrite,etc.),and the effects of cooling rate of magnesium alloy after heat treatment on the microstructure and stress distribution are reviewed.The reasons for the divergence about the influence of cooling rate on the microstructure of magnesium alloy are analyzed in detail.The effects of cooling rate on the mechanical properties,corrosion resistance and oxidation resistance of magnesium alloy are also analyzed and discussed deeply.Finally,the new methods and approaches to study the effects of cooling rate on the microstructure and properties of magnesium alloy are prospected.
基金the financial supports from Program for the Supported by the Innovative Talents Support Program of Higher Education Institutions in Shanxi Provincethe‘Shanxi Province’s Key Core Technology and Common Technology Research And Development Special Project’(2020XXX015)Special Project for Scientific and Technological Cooperation and Exchange in Shanxi Province(regional cooperation project):Key Technologies for flexible manufacturing of high-strength heat-resistant magnesium alloy cabin components(202104041101033)。
文摘This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component.
基金the Australian Research Council(ARC)through the discovery grant DP210101862。
文摘Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.
基金supported by the ARDB,DRDO,New Delhi[Sanction Code:MSRB/TM/ARDB/GIA/19-20/044].
文摘Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryogenic machining on the surface integrity(SI)characteristics of AZ91 magnesium alloy.Face milling using uncoated carbide inserts have been performed under liquid nitrogen(LN_(2))assisted cryogenic condition and compared with conventional(dry)milling.Experiments are performed using machining parameters in terms of cutting speeds of 325,475,625 m/min,feed rates of 0.05,0.1,0.15 mm/teeth and depth of cuts of 0.5,1,1.5 mm respectively.Most significant surface integrity characteristics such as surface roughness,microhardness,microstructure,and residual stresses have been investigated.Behaviour of SI characteristics with respect to milling parameters have been identified using statistical technique such as ANOVA and signal-to-noise(S/N)ratio plots.Additionally,the multi criteria decision making(MCDM)techniques such as additive ratio assessment method(ARAS)and complex proportional assessment(COPRAS)have been utilized to identify the optimal conditions for milling AZ91 magnesium alloy under both dry and cryogenic conditions.Use of LN_(2)during machining,resulted in reduction in machining temperature by upto 29%with a temperature drop from 251.2℃under dry condition to 178.5℃in cryogenic condition.Results showed the advantage of performing cryogenic milling in improving the surface integrity to a significant extent.Cryogenic machining considerably minimized the roughness by upto 28%and maximised the microhardness by upto 23%,when compared to dry machining.Cutting speed has caused significant impact on surface roughness(95.33%-dry,92.92%-cryogenic)and surface microhardness(80.33%-dry,82.15%-cryogenic).Due to the reduction in machining temperature,cryogenic condition resulted in compressive residual stresses(maximumσ║=-113 MPa)on the alloy surface.Results indicate no harm to alloy microstructure in both conditions,with no alterations to grain integrity and minimal reduction in the average grain sizes in the near machined area,when compared to before machined(base material)surface.The MCDM approach namely ARAS and COPRAS resulted in identical results,with the optimal condition being cutting speed of 625 m/min,a feed rate of 0.05 mm/teeth,and a depth of cut of 0.5 mm for both dry and cryogenic environments.
基金support of the Key Research and Development Program of Shandong Province of China(grant no.2021ZLGX01)Shandong Provincial Key Research and Development Program(Major Scientific and Technological Innovation Project),China(grant no.2021CXGC010206).
文摘According to a high-temperature compression test of rare earth magnesium alloy(WE43),a strain-compensated constitutive model of the Arrhenius equation based on Zener-Hollomon parameters was established,and the rheological behaviors were predicted.The model exhibited relatively serious prediction distortion in the low-temperature and high-strain rate parameter interval,and its accuracy was still unsatisfactory even after modification by a correction operator considering the coupling of temperature and strain rate.The microstructure characterization and statistical analysis showed that a large number of twinning occurred in the parameter intervals with prediction deviation.The occurrence of twinning complicated the local internal stress distribution by drastically changing the crystal orientation and led to significant fluctuations in the macroscopic strain-stress and hardening curves relative to the rheological processes dominated by the dislocation and softening mechanisms,making the logarithm of the strain rate and stress deviate from the linear relationship.This twinning phenomenon was greatly influenced by the temperature and strain rate.Herein,the influence mechanism on twinning behavior was analyzed from the perspective of the interaction of dislocation and twinning.
基金financially supported by the National Natural Science Foundation of China(Nos.12192210 and12192214)the Independent Project of State Key Laboratory of Traction Power(No.2022TPL-T05)。
文摘The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (RT).The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed.Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths;multiaxial ratchetting presents strong path dependence,and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional45°linear loading paths;multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase.Moreover,stress-strain curves show a convex and symmetrical shape in axial/torsional directions.Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles.The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys.
基金obtained from Comunidad de Madrid through the Universidad Politécnica de Madrid in the line of Action for Encouraging Research from Young Doctors(project CdM ref:APOYO-JOVENES779NQU-57-LSWH0F,UPM ref M190020074AOC,CAREDEL)MINECO(Spain)Project MAT2015-68919-C3-1-R(MINECO/FEDER)+4 种基金project PID2020-118626RB-I00(RAPIDAL)awarded by MCIN/AEI/10.13039/501100011033FSP assistanceProject CAREDELProject RAPIDAL for research contractsMCIN/AEI for a FPI contract number PRE2021-096977。
文摘The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios.
基金supported by the National Science Foundation under grant DMR#2320355supported by the Department of Energy,Office of Science,Basic Energy Sciences,under Award#DESC0022305(formulation engineering of energy materials via multiscale learning spirals)Computing resources were provided by the ARCH high-performance computing(HPC)facility,which is supported by National Science Foundation(NSF)grant number OAC 1920103。
文摘Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.
文摘Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits.