期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of bipolar-plates design on corrosion,mass and heat transfer in proton-exchange membrane fuel cells and water electrolyzers:A review
1
作者 Jiuhong Zhang Xiejing Luo +2 位作者 Yingyu Ding Luqi Chang Chaofang Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1599-1616,共18页
Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar... Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science. 展开更多
关键词 bipolar-plates flow design mass and heat transfer CORROSION water electrolyzers fuel cells
下载PDF
Impact of Magnetic Field on a Peristaltic Flow with Heat Transfer of a Fractional Maxwell Fluid in a Tube
2
作者 Hanan S.Gafel 《Computers, Materials & Continua》 SCIE EI 2022年第9期6141-6153,共13页
Magnetic field and the fractional Maxwell fluids’impacts on peristaltic flows within a circular cylinder tube with heat transfer was evaluated while assuming that they are preset with a low-Reynolds number and a long... Magnetic field and the fractional Maxwell fluids’impacts on peristaltic flows within a circular cylinder tube with heat transfer was evaluated while assuming that they are preset with a low-Reynolds number and a long wavelength.Utilizing,the fractional calculus method,the problem was solved analytically.It was deduced for temperature,axial velocity,tangential stress,and heat transfer coefficient.Many emerging parameters and their effects on the aspects of the flow were illustrated,and the outcomes were expressed via graphs.A special focus was dedicated to some criteria,such as the wave amplitude’s effect,Hartman and Grashof numbers,radius and relaxation–retardation ratios,and heat source,which were under discussions on the axial velocity,tangential stress,heat transfer,and temperature coefficients across one wavelength.Multiple graphs of physical interest were provided.The outcomes state that the effect of the criteria mentioned beforehand(the Hartman and Grashof numbers,wave amplitude,radius ratio,heat source,and relaxation–retardation ratio)were quite evident. 展开更多
关键词 Peristaltic flow fractional maxwell fluid mass and heat transfer magneto-hydrodynamic flow
下载PDF
Numerical simulation of diffusion process for oxidative dehydrogenation of butene to butadiene
3
作者 黄凯 林生 周建成 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期572-576,共5页
A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during t... A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during the oxidative dehydrogenation of butene to butadiene process. The verified model can be used to investigate the influence of catalyst diameter on the flow distribution inside the particle. The simulation results demonstrate that the mass fraction gradients of all species, temperature gradient and pressure gradient increase with the increase of the particle diameter. It means that there is a high intraparticle transfer resistance and strong diffusion when applying the large catalysts. The external particle mass transfer resistance is nearly constant under different particle diameters so that the effect of particle diameter at external diffusion can be ignored. A large particle diameter can lead to a high surface temperature, which indicates the external heat transfer resistance. Moreover, the selectivity of reaction may be changed with a variety of particle diameters so that choosing appropriate particle size can enhance the production of butadiene and optimize the reaction process. 展开更多
关键词 multi-scale model mass and heat transfer particle diameter oxidative dehydrogenation of butene to butadiene single particle model transfer resistance
下载PDF
Field synergy analysis of different flow patterns in falling-film dehumidification system with horizontal pipes 被引量:1
4
作者 NIU Run-ping KUANG Da-qing +1 位作者 WANG Shi-zheng CHEN Xiao-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2353-2366,共14页
Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution betwee... Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern. 展开更多
关键词 film falling between horizontal pipes fluent software flow pattern of liquid film synergy angle mass and heat transfer
下载PDF
Numerical Study on Surface Wettability Gradient Enhanced Ultra-Thin Loop Heat Pipe 被引量:1
5
作者 GAO Xintian CHEN Anqi +3 位作者 ZHU Yuan LYU You GUO Wei ZHOU Shaoxin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1318-1327,共10页
Loop heat pipes(LHPs),as high-efficiency heat dissipation components,are considered to be superior thermal conductors beyond any known materials.To apply LHPs to mobile electronics,a small,thin and compact system need... Loop heat pipes(LHPs),as high-efficiency heat dissipation components,are considered to be superior thermal conductors beyond any known materials.To apply LHPs to mobile electronics,a small,thin and compact system needs to be designed.However,with the trend of miniaturization,the heat transfer performance of LHPs degrades rapidly due to the significant increase of working fluid backflow resistance.This work aims to propose an effective solution to this problem.In this work,the surface wettability gradient(SWG)is introduced into the ultra-thin LHP,and the influence of SWG on mass and heat transfer performance is studied comprehensively by using a transient three-dimensional numerical model.It is observed that the SWG can significantly increase the vapor-liquid circulation efficiency and improve heat transfer performance.Numerical experiments have been performed to compare the two kinds of LHPs with and without SWG.At the heat load of 4–6 W,the start-up time for LHP with SWG is shortened by 11.5%and the thermal resistance is reduced by about 44.3%,compared with the LHP without SWG.This work provides a solution for the performance-degradation problem caused by miniaturization,as a numerical reference for experiments. 展开更多
关键词 numerical study surface wettability gradient ultra-thin loop heat pipe mass and heat transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部