An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through su...An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania.展开更多
With the development of high-resolution and high-throughput mass spectrometry(MS)technology, a large quantum of proteomic data is continually being generated. Collecting and sharing these data are a challenge that r...With the development of high-resolution and high-throughput mass spectrometry(MS)technology, a large quantum of proteomic data is continually being generated. Collecting and sharing these data are a challenge that requires immense and sustained human effort. In this report, we provide a classification of important web resources for MS-based proteomics and present rating of these web resources, based on whether raw data are stored, whether data submission is supported,and whether data analysis pipelines are provided. These web resources are important for biologists involved in proteomics research.展开更多
文摘An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania.
基金supported by the Ministry of Science and Technology of China(Grant Nos.2013CB910801,2012AA020201,2012AA020409,and 2014DFB30010)the National Natural Science Foundation of China(Grant Nos.21105121,21475150,and 61303073)Beijing Municipal Natural Science Foundation of China(Grant No.5122013)
文摘With the development of high-resolution and high-throughput mass spectrometry(MS)technology, a large quantum of proteomic data is continually being generated. Collecting and sharing these data are a challenge that requires immense and sustained human effort. In this report, we provide a classification of important web resources for MS-based proteomics and present rating of these web resources, based on whether raw data are stored, whether data submission is supported,and whether data analysis pipelines are provided. These web resources are important for biologists involved in proteomics research.