Existence of intraparticle mass transfer limitations under typical Fischer-Tropsch synthesis has been reported previously,but there is no suitable study on the existence of intraparticle diffusion limitations under pr...Existence of intraparticle mass transfer limitations under typical Fischer-Tropsch synthesis has been reported previously,but there is no suitable study on the existence of intraparticle diffusion limitations under pretreatment steps (reduction and activation) and their effect on catalytic performance for iron based catalysts.In this study,Fe-Cu-La-SiO2 catalysts were prepared by co-precipitation method.To investigate the intraparticle mass transfer limitation under reduction,activation and reaction steps,and its effect on catalytic performance,catalyst pellets with different sizes of 6,3,1 and 0.5 mm have been prepared.All catalysts were calcined,pretreated and tested under similar conditions.The catalysts were activated in hydrogen (5%H2in N2) at 450℃ for 3 h and exposed to syngas (H2/CO=1) at 270℃ and atmospheric pressure for 40 h.Afterwards,FTS reaction tests were performed for approximately 120 h to reach steady state conditions at 290℃,17 bar and a feed flow (syngas H2/CO=1) rate of 3 L/h (STP).Using small pellets resulted in higher CO conversion,FT reaction rate and C5+ productivity as compared with larger pellets.The small pellets reached steady state conditions just 20 h after starting the reaction.Whereas for larger pellets,CO conversion,FT reaction rate and C5+ productivity increased gradually,and reached steady state and maximum values after 120 h of operation.The results illustrate that mass transfer limitations exist not only for FTS reaction but also for the reduction and carburization steps which lead to various phase formation through catalyst activation.Also the results indicate that some effects of mass transfer limitations in activation step,can be compensated in the reaction step.The results can be used for better design of iron based catalyst to improve the process economy.展开更多
酸性分子筛的催化性能受其微孔扩散限制的影响,通常将介孔引入分子筛可显著改善其传质效率。采用同晶取代和碱处理法,制备了H[P,Al]-ZSM-5-AT-0.05M催化剂样品,并分别采用XRD,N 2等温吸附-脱附和Py-IR等对制备的分子筛进行表征,其表面...酸性分子筛的催化性能受其微孔扩散限制的影响,通常将介孔引入分子筛可显著改善其传质效率。采用同晶取代和碱处理法,制备了H[P,Al]-ZSM-5-AT-0.05M催化剂样品,并分别采用XRD,N 2等温吸附-脱附和Py-IR等对制备的分子筛进行表征,其表面积、孔体积和P/Al(摩尔比)分别为328 m 2/g,0.23 cm 3/g和0.027。采用紫外分光光度法研究了苯甲醇在H[P,Al]-ZSM-5-AT-0.05M上的自醚化反应,其Thiele模数(∅)和效率因子(η)分别为0.08和16.9,证明由于H[P,Al]-ZSM-5-AT-0.05M分子筛中介孔的存在,使得苯甲醇自醚化反应具有较高的传质速率和较低的扩散限制。。展开更多
The oxygen evolution reaction(OER)represents one of the major bottlenecks for broad-based applications of many clean energy storage/conversion technologies.The key to solving this problem lies in developing high-perfo...The oxygen evolution reaction(OER)represents one of the major bottlenecks for broad-based applications of many clean energy storage/conversion technologies.The key to solving this problem lies in developing high-performing,cost effective and stable catalysts for the OER.Herein,we demonstrate that ubiquitous stainless steel mesh(SSM)materials activated by a facile cathodization treatment can be employed as a high performing OER catalyst,as showcased by the impressively low overpotentials of 275 and 319 mV to reach the benchmark current densities of 10 and 100 mA cm^−2(1.0 M KOH),respectively.Cathodized SSM also exhibits excellent performance in a two-electrode water electrolyzer,which requires a low cell voltage of 1.58 at 10 mA cm^−2 and outperforms many of water electrolyzers using earth-abundant OER catalysts.Moreover,cathodized SSM with minor performance degradation after the stability test can also be readily healed by subjecting it to an additional cathodization treatment.It is disclosed that the superior performance of cathodized SSMs stems from the surface enrichment of OER active Ni(oxy)hydroxide,facile gas-bubble removal and transportation over the unique mesh-structured surfaces,while the abundant reservoir of nickel in the bulk allows healing of the catalyst by a facile cathodization.展开更多
The kinetics of propane dehydrogenation and catalyst deactivation over Pt-Sn/Al2O3 catalyst were studied.Performance test runs were carried out in a fixed-bed integral reactor.Using a power-law rate expression for the...The kinetics of propane dehydrogenation and catalyst deactivation over Pt-Sn/Al2O3 catalyst were studied.Performance test runs were carried out in a fixed-bed integral reactor.Using a power-law rate expression for the surface reaction kinetics and independent law for deactivation kinetics,the experimental data were analyzed both by integral and a novel differential method of analysis and the results were compared.To avoid fluctuation of time-derivatives of conversion required for differential analysis,the conversion-time data were first fitted with appropriate functions.While the time-zero and rate constant of reaction were largely insensitive to the function employed,the rate constant of deactivation was much more sensitive to the function form.The advantage of the proposed differential method,however,is that the integration of the rate expression is not necessary which otherwise could be complicated or impossible.It was also found that the reaction is not limited by external and internal mass transfer limitations,implying that the employed kinetics could be considered as intrinsic ones.展开更多
文摘Existence of intraparticle mass transfer limitations under typical Fischer-Tropsch synthesis has been reported previously,but there is no suitable study on the existence of intraparticle diffusion limitations under pretreatment steps (reduction and activation) and their effect on catalytic performance for iron based catalysts.In this study,Fe-Cu-La-SiO2 catalysts were prepared by co-precipitation method.To investigate the intraparticle mass transfer limitation under reduction,activation and reaction steps,and its effect on catalytic performance,catalyst pellets with different sizes of 6,3,1 and 0.5 mm have been prepared.All catalysts were calcined,pretreated and tested under similar conditions.The catalysts were activated in hydrogen (5%H2in N2) at 450℃ for 3 h and exposed to syngas (H2/CO=1) at 270℃ and atmospheric pressure for 40 h.Afterwards,FTS reaction tests were performed for approximately 120 h to reach steady state conditions at 290℃,17 bar and a feed flow (syngas H2/CO=1) rate of 3 L/h (STP).Using small pellets resulted in higher CO conversion,FT reaction rate and C5+ productivity as compared with larger pellets.The small pellets reached steady state conditions just 20 h after starting the reaction.Whereas for larger pellets,CO conversion,FT reaction rate and C5+ productivity increased gradually,and reached steady state and maximum values after 120 h of operation.The results illustrate that mass transfer limitations exist not only for FTS reaction but also for the reduction and carburization steps which lead to various phase formation through catalyst activation.Also the results indicate that some effects of mass transfer limitations in activation step,can be compensated in the reaction step.The results can be used for better design of iron based catalyst to improve the process economy.
文摘酸性分子筛的催化性能受其微孔扩散限制的影响,通常将介孔引入分子筛可显著改善其传质效率。采用同晶取代和碱处理法,制备了H[P,Al]-ZSM-5-AT-0.05M催化剂样品,并分别采用XRD,N 2等温吸附-脱附和Py-IR等对制备的分子筛进行表征,其表面积、孔体积和P/Al(摩尔比)分别为328 m 2/g,0.23 cm 3/g和0.027。采用紫外分光光度法研究了苯甲醇在H[P,Al]-ZSM-5-AT-0.05M上的自醚化反应,其Thiele模数(∅)和效率因子(η)分别为0.08和16.9,证明由于H[P,Al]-ZSM-5-AT-0.05M分子筛中介孔的存在,使得苯甲醇自醚化反应具有较高的传质速率和较低的扩散限制。。
基金funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(grant agreement No.681719)L.-L.S.acknowledges the funding from the China Scholarship Council(No.201506210077)。
文摘The oxygen evolution reaction(OER)represents one of the major bottlenecks for broad-based applications of many clean energy storage/conversion technologies.The key to solving this problem lies in developing high-performing,cost effective and stable catalysts for the OER.Herein,we demonstrate that ubiquitous stainless steel mesh(SSM)materials activated by a facile cathodization treatment can be employed as a high performing OER catalyst,as showcased by the impressively low overpotentials of 275 and 319 mV to reach the benchmark current densities of 10 and 100 mA cm^−2(1.0 M KOH),respectively.Cathodized SSM also exhibits excellent performance in a two-electrode water electrolyzer,which requires a low cell voltage of 1.58 at 10 mA cm^−2 and outperforms many of water electrolyzers using earth-abundant OER catalysts.Moreover,cathodized SSM with minor performance degradation after the stability test can also be readily healed by subjecting it to an additional cathodization treatment.It is disclosed that the superior performance of cathodized SSMs stems from the surface enrichment of OER active Ni(oxy)hydroxide,facile gas-bubble removal and transportation over the unique mesh-structured surfaces,while the abundant reservoir of nickel in the bulk allows healing of the catalyst by a facile cathodization.
文摘The kinetics of propane dehydrogenation and catalyst deactivation over Pt-Sn/Al2O3 catalyst were studied.Performance test runs were carried out in a fixed-bed integral reactor.Using a power-law rate expression for the surface reaction kinetics and independent law for deactivation kinetics,the experimental data were analyzed both by integral and a novel differential method of analysis and the results were compared.To avoid fluctuation of time-derivatives of conversion required for differential analysis,the conversion-time data were first fitted with appropriate functions.While the time-zero and rate constant of reaction were largely insensitive to the function employed,the rate constant of deactivation was much more sensitive to the function form.The advantage of the proposed differential method,however,is that the integration of the rate expression is not necessary which otherwise could be complicated or impossible.It was also found that the reaction is not limited by external and internal mass transfer limitations,implying that the employed kinetics could be considered as intrinsic ones.