期刊文献+
共找到1,350篇文章
< 1 2 68 >
每页显示 20 50 100
Mathematic modeling on flexible cooling system in hot strip mill 被引量:4
1
作者 彭良贵 刘相华 +1 位作者 赵宪明 吴迪 《Journal of Central South University》 SCIE EI CAS 2014年第1期43-49,共7页
A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relations... A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers.Model parameters were validated by measured data.Heat transfer models including air convection model,heat radiation model and water cooling capacity model were detailedly introduced.In addition,effects on cooling capacity by water temperature and different valve patterns were also presented.Finally,the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm.Since online application of the sophisticated CTC process control system based on these models,run-out table cooling control system has been running stably and reliably to produce resource-saving,low-cost steels with smaller grain size. 展开更多
关键词 mathematic model ultra fast cooling laminar flow cooling variable frequency control coiling temperature control
下载PDF
MATHEMATICAL MODELING AND BIFURCATION ANALYSIS FOR A BIOLOGICAL MECHANISM OF CANCER DRUG RESISTANCE
2
作者 包康博 梁桂珍 +1 位作者 田天海 张兴安 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1165-1188,共24页
Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory ca... Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory cancer cell populations.Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system,we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting.We analyze the local geometric properties of the equilibria of the model.Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population.Moreover,the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength.Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes. 展开更多
关键词 mathematical model drug resistance cancer heterogeneity immune system targeted therapy
下载PDF
Aggravation of Cancer,Heart Diseases and Diabetes Subsequent to COVID-19 Lockdown via Mathematical Modeling
3
作者 Fatma Nese Efil Sania Qureshi +3 位作者 Nezihal Gokbulut Kamyar Hosseini Evren Hincal Amanullah Soomro 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期485-512,共28页
The global populationhas beenandwill continue to be severely impacted by theCOVID-19 epidemic.The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal... The global populationhas beenandwill continue to be severely impacted by theCOVID-19 epidemic.The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal conditions such as cancer,heart disease,and diabetes.Here,using ordinary differential equations(ODEs),two mathematical models are developed to explain the association between COVID-19 and cancer and between COVID-19 and diabetes and heart disease.After that,we highlight the stability assessments that can be applied to these models.Sensitivity analysis is used to examine how changes in certain factors impact different aspects of disease.The sensitivity analysis showed that many people are still nervous about seeing a doctor due to COVID-19,which could result in a dramatic increase in the diagnosis of various ailments in the years to come.The correlation between diabetes and cardiovascular illness is also illustrated graphically.The effects of smoking and obesity are also found to be significant in disease compartments.Model fitting is also provided for interpreting the relationship between real data and the results of thiswork.Diabetic people,in particular,need tomonitor their health conditions closely and practice heart health maintenance.People with heart diseases should undergo regular checks so that they can protect themselves from diabetes and take some precautions including suitable diets.The main purpose of this study is to emphasize the importance of regular checks,to warn people about the effects of COVID-19(including avoiding healthcare centers and doctors because of the spread of infectious diseases)and to indicate the importance of family history of cancer,heart diseases and diabetes.The provision of the recommendations requires an increase in public consciousness. 展开更多
关键词 COVID-19 mathematical modeling CANCER DIABETES heart diseases sensitivity analysis
下载PDF
A Mathematical Modeling of 3D Cubical Geometry Hypothetical Reservoir under the Effect of Nanoparticles Flow Rate,Porosity,and Relative Permeability
4
作者 Mudasar Zafar Hamzah Sakidin +6 位作者 Abida Hussain Loshini Thiruchelvam Mikhail Sheremet Iskandar Dzulkarnain Roslinda Nazar Abdullah Al-Yaari Rizwan Safdar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1193-1211,共19页
This study aims to formulate a steady-state mathematical model for a three-dimensional permeable enclosure(cavity)to determine the oil extraction rate using three distinct nanoparticles,SiO_(2),Al_(2)O_(3),and Fe_(2)O... This study aims to formulate a steady-state mathematical model for a three-dimensional permeable enclosure(cavity)to determine the oil extraction rate using three distinct nanoparticles,SiO_(2),Al_(2)O_(3),and Fe_(2)O_(3),in unconventional oil reservoirs.The simulation is conducted for different parameters of volume fractions,porosities,and mass flow rates to determine the optimal oil recovery.The impact of nanoparticles on relative permeability(kr)and water is also investigated.The simulation process utilizes the finite volume ANSYS Fluent.The study results showed that when the mass flow rate at the inlet is low,oil recovery goes up.In addition,they indicated that silicon nanoparticles are better at getting oil out of the ground(i.e.,oil reservoir)than Al_(2)O_(3)and Fe_(2)O_(3).Most oil can be extracted from SiO_(2),Al_(2)O_(3),and Fe_(2)O_(3)at a rate of 97.8%,96.5%,and 88%,respectively. 展开更多
关键词 Unconventional reservoir cubical cavity oil recovery rate reservoir engineering mathematical modeling
下载PDF
Mathematical Modeling of Cell Polarity Establishment of Budding Yeast
5
作者 Yue Liu Jun Xie +1 位作者 Hay-Oak Park Wing-Cheong Lo 《Communications on Applied Mathematics and Computation》 EI 2024年第1期218-235,共18页
The budding yeast Saccharomyces cerevisiae is a powerful model system for studying the cell polarity establishment.The cell polarization process is regulated by signaling molecules,which are initially distributed in t... The budding yeast Saccharomyces cerevisiae is a powerful model system for studying the cell polarity establishment.The cell polarization process is regulated by signaling molecules,which are initially distributed in the cytoplasm and then recruited to a proper location on the cell membrane in response to spatial cues or spontaneously.Polarization of these signaling molecules involves complex regulation,so the mathematical models become a useful tool to investigate the mechanism behind the process.In this review,we discuss how mathematical modeling has shed light on different regulations in the cell polarization.We also propose future applications for the mathematical modeling of cell polarization and morphogenesis. 展开更多
关键词 Budding yeast CDC42 MORPHOGENESIS SEPTIN mathematical models
下载PDF
Mathematical Modeling of the Co-Infection Dynamics of HIV and Tuberculosis Incorporating Inconsistency in HIV Treatment
6
作者 Sr Mary Nyambura Mwangi Virginia M. Kitetu Isaac O. Okwany 《Journal of Applied Mathematics and Physics》 2024年第5期1744-1768,共25页
A non-linear HIV-TB co-infection has been formulated and analyzed. The positivity and invariant region has been established. The disease free equilibrium and its stability has been determined. The local stability was ... A non-linear HIV-TB co-infection has been formulated and analyzed. The positivity and invariant region has been established. The disease free equilibrium and its stability has been determined. The local stability was determined and found to be stable under given conditions. The basic reproduction number was obtained and according to findings, co-infection diminishes when this number is less than unity, and persists when the number is greater than unity. The global stability of the endemic equilibrium was calculated. The impact of HIV on TB was established as well as the impact of TB on HIV. Numerical solution was also done and the findings indicate that when the rate of HIV treatment increases the latent TB increases while the co-infected population decreases. When the rate of HIV treatment decreases the latent TB population decreases and the co-infected population increases. Encouraging communities to prioritize the consistent treatment of HIV infected individuals must be emphasized in order to reduce the scourge of HIV-TB co-infection. 展开更多
关键词 Co-Infection modeling HIV-TB Co-Infection mathematical modeling Reproduction Number Inconsistent Treatment
下载PDF
Mathematical Modeling of HIV Investigating the Effect of Inconsistent Treatment
7
作者 Sr Mary Nyambura Mwangi Virginia M. Kitetu Isaac O. Okwany 《Journal of Applied Mathematics and Physics》 2024年第4期1063-1078,共16页
HIV is a retrovirus that infects and impairs the cells and functions of the immune system. It has caused a great challenge to global public health systems and leads to Acquired Immunodeficiency Syndrome (AIDS), if not... HIV is a retrovirus that infects and impairs the cells and functions of the immune system. It has caused a great challenge to global public health systems and leads to Acquired Immunodeficiency Syndrome (AIDS), if not attended to in good time. Antiretroviral therapy is used for managing the virus in a patient’s lifetime. Some of the symptoms of the disease include lean body mass and many opportunistic infections. This study has developed a SIAT mathematical model to investigate the impact of inconsistency in treatment of the disease. The arising non-linear differential equations have been obtained and analyzed. The DFE and its stability have been obtained and the study found that it is locally asymptotically stable when the basic reproduction number is less than unity. The endemic equilibrium has been obtained and found to be globally asymptotically stable when the basic reproduction number is greater than unity. Numerical solutions have been obtained and analyzed to give the trends in the spread dynamics. The inconsistency in treatment uptake has been analyzed through the numerical solutions. The study found that when the treatment rate of those infected increases, it leads to an increase in treatment population, which slows down the spread of HIV and vice versa. An increase in the rate of treatment of those with AIDS leads to a decrease in the AIDS population, the reverse happens when this rate decreases. The study recommends that the community involvement in advocating for consistent treatment of HIV to curb the spread of the disease. 展开更多
关键词 HIV modeling mathematical modeling Reproduction Number Inconsistent Treatment
下载PDF
Problem-based Learning Combining Seminar Teaching Method for the Practice of Mathematical Modeling Course's Teaching Reform for Computer Discipline
8
作者 Siwei Zhou Zhao Li 《计算机教育》 2023年第12期55-62,共8页
Mathematical modeling course has been one of the fast development courses in China since 1992,which mainly trains students’innovation ability.However,the teaching of mathematical modeling course is quite difficult si... Mathematical modeling course has been one of the fast development courses in China since 1992,which mainly trains students’innovation ability.However,the teaching of mathematical modeling course is quite difficult since it requires students to have a strong mathematical foundation,good ability to design algorithms,and programming skills.Besides,limited class hours and lack of interest in learning are the other reasons.To address these problems,according to the outcome-based education,we adopt the problem-based learning combined with a seminar mode in teaching.We customize cases related to computer and software engineering,start from simple problems in daily life,step by step deepen the difficulty,and finally refer to the professional application in computer and software engineering.Also,we focus on ability training rather than mathematical theory or programming language learning.Initially,we prepare the problem,related mathematic theory,and core code for students.Furtherly,we train them how to find the problem,and how to search the related mathematic theory and software tools by references for modeling and analysis.Moreover,we solve the problem of limited class hours by constructing an online resource learning library.After a semester of practical teaching,it has been shown that the interest and learning effectiveness of students have been increased and our reform plan has achieved good results. 展开更多
关键词 mathematical modeling Problem-based learning Teaching reform Computer education
下载PDF
A Method for Constructing Mathematical Modeling of the Spread of a New Crown Pneumonia Epidemic Based on the Effect of Temperature
9
作者 Zhening Bao 《Journal of Applied Mathematics and Physics》 2023年第11期3625-3640,共16页
To better predict the spread of the COVID-19 outbreak, mathematical modeling and analysis of the spread of the COVID-19 outbreak is proposed based on data analysis and infectious disease theory. Firstly, the mathemati... To better predict the spread of the COVID-19 outbreak, mathematical modeling and analysis of the spread of the COVID-19 outbreak is proposed based on data analysis and infectious disease theory. Firstly, the mathematical model indicators of the spread of the new coronavirus pneumonia epidemic are determined by combining the theory of infectious diseases, the basic assumptions of the spread model of the new coronavirus pneumonia epidemic are given based on the theory of data analysis model, the spread rate of the new coronavirus pneumonia epidemic is calculated by combining the results of the assumptions, and the spread rate of the epidemic is inverted to push back into the assumptions to complete the construction of the mathematical modeling of the diffusion. Relevant data at different times were collected and imported into the model to obtain the spread data of the new coronavirus pneumonia epidemic, and the results were analyzed and reflected. The model considers the disease spread rate as the dependent variable of temperature, and analyzes and verifies the spread of outbreaks over time under real temperature changes. Comparison with real results shows that the model developed in this paper is more in line with the real disease spreading situation under specific circumstances. It is hoped that the accurate prediction of the epidemic spread can provide relevant help for the effective containment of the epidemic spread. 展开更多
关键词 Pneumococcal Pneumonia OUTBREAK Dispersion Model mathematical modeling Prediction
下载PDF
Practical Use of the Subjective Mathematical Model of Bayes and Its External Validation in Dental Medicine & Dentistry
10
作者 Muyembi Muinaminayi Pierre Kayembe Mwimbi David +9 位作者 Nyimi Boshabu Fidèle Panoumvita Kapamona Junior Nsudila Mpoyi Monique Tubanza Mulongo Simplot Sekele Issouradi-Bourley Jean-Paul Mantshumba Milolo Augustin Kalala Kazadi Em Mabela Rosti Munyanga Mukongo Sylvain Dan Wang 《Open Journal of Statistics》 2024年第5期553-575,共23页
Objective: Our study aims to validate the subjective Bayes mathematical model using the mathematical model of logistic regression. Expert systems are being utilized increasingly in medical fields for the purposes of a... Objective: Our study aims to validate the subjective Bayes mathematical model using the mathematical model of logistic regression. Expert systems are being utilized increasingly in medical fields for the purposes of assisting diagnosis and treatment planning in Dentistry. Existing systems used few symptoms for dental diagnosis. In Dentistry, few symptoms are not enough for diagnosis. In this research, a conditional probability model (Bayes rule) was developed with increased number of symptoms associated with a disease for diagnosis. A test set of recurrent cases was then used to test the diagnostic capacity of the system. The generated diagnosis matched that of the human experts. The system was also tested for its capacity to handle uncommon dental diseases and the system portrayed useful potential. Method: The study used the Subjective Mathematical Bayes Model (SBM) approach and employed Logistic Regression Mathematical Model (LMR) techniques. The external validation of the subjective mathematical Bayes model (MSB) concerns the real cases of 625 patients who developed alveolar osteitis (OA). We propose strategies for reproducibility and reporting standards, outlining an updated WAMBS (when to Worry and how to Avoid the Misuse of Bayesian Statistics) checklist. Finally, we outline the impact of Bayesian analysis Logistic Regression Mathematical Model (LMR) techniques and on artificial intelligence, a major goal in the next decade. Results: The internal validation had identified seven (7) etiological factors of OA, which will be compared to the cases of MRL, for the external validation which retained six (6) etiological factors of OA. The experts in the internal validation of the MSB had generated 40 cases of OA and a COP of (0.5), which will be compared to the MRL that collected 625 real cases of OA to produce a Cop of (0.6) in the external validation, which discriminates between healthy patients (Se) and sick patients (Sp). Compared to real cases and the logistic regression model, the Bayesian model is efficient and its validity is established. 展开更多
关键词 External Validation-MSB-MRL mathematical Model
下载PDF
Mathematical Modeling and Effect of Various Hot-Air Drying on Mushroom(Lentinus edodes) 被引量:22
11
作者 GUO Xiao-hui XIA Chun-yan +2 位作者 TAN Yu-rong CHEN Long MING Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第1期207-216,共10页
An experimental study was performed to determine the characteristics and drying process of mushroom (Lentinus edodes) by 6 different hot-air drying methods namely isothermal drying, uniform raise drying, non-uniform... An experimental study was performed to determine the characteristics and drying process of mushroom (Lentinus edodes) by 6 different hot-air drying methods namely isothermal drying, uniform raise drying, non-uniform raise drying, uniform intermittent drying, non-uniform intermittent drying and combined drying. The chemical composition (dry matter, ash, crude protein, crude fat, total sugars, dietary fiber, and energy), color parameters (L, a*, b*, c*, and h~) and rehydration capacities were determined. Among all the experiments, non-uniform intermittent drying reached a better comprehensive results due to the higher chemical composition, better color quality associated with high bright (26.381+5.842), high color tone (73.670+2.975), low chroma (13.349a:3.456) as well as the highest rehydration (453.76% weigh of dried body). Nine kinds of classical mathematical model were used to obtained moisture data and the Midili-kucuk model can be described by the drying process with the coefficient (R2 ranged from 0.99790 to 0.99967), chi-square (X2 ranged from 0.00003 to 0.00019) and root mean square error (RMSE ranged from 0.000486 to 0.0012367). 展开更多
关键词 Lentinus edodes hot-air drying mathematical model
下载PDF
Nonlinear Mathematical Modeling and Sensitivity Analysis of Hydraulic Drive Unit 被引量:12
12
作者 KONG Xiangdong YU Bin +2 位作者 QUAN Lingxiao BA Kaixian WU Liujie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期999-1011,共13页
The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displa... The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit. 展开更多
关键词 nonlinear mathematical model hydraulic drive unit valve-controlled symmetrical cylinder sensitivity analysis sensitivity index
下载PDF
Physical and Mathematical Modeling of the Argon-Oxygen Decarburization Refining Process of Stainless Steel 被引量:5
13
作者 魏季和 《Journal of Shanghai University(English Edition)》 CAS 2002年第1期1-23,共23页
The available studies in the literature on physical and mathematical modeling of the argon oxygen decarburization (AOD) process of stainless steel have briefly been reviewed. The latest advances made by the author wi... The available studies in the literature on physical and mathematical modeling of the argon oxygen decarburization (AOD) process of stainless steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was used to investigate the fluid flow and mixing characteristics in the bath of an 18 t AOD vessel, as well as the 'back attack' action of gas jets and its effects on the erosion and wear of the refractory lining, with sufficiently full kinematic similarity. The non rotating and rotating gas jets blown through two annular tuyeres, respectively of straight tube and spiral flat tube type, were employed in the experiments. The geometric similarity ratio between the model and its prototype (including the straight tube type tuyeres) was 1:3. The influences of the gas flow rate, the angle included between the two tuyeres and other operating parameters, and the suitability of the spiral tuyere as a practical application, were examined. These latest studies have clearly and successfully brought to light the fluid flow and mixing characteristics in the bath and the overall features of the back attack phenomena of gas jets during the blowing, and have offered a better understanding of the refining process. Besides, mathematical modeling for the refining process of stainless steel was carried out and a new mathematical model of the process was proposed and developed. The model performs the rate calculations of the refining and the mass and heat balances of the system. Also, the effects of the operating factors, including adding the slag materials, crop ends, and scrap, and alloy agents; the non isothermal conditions; the changes in the amounts of metal and slag during the refining; and other factors were all considered. The model was used to deal with and analyze the austenitic stainless steel making (including ultra low carbon steel) and was tested on data of 32 heats obtained in producing 304 grade steel in an 18 t AOD vessel. The changes in the bath composition and temperature during the refining process with time can be accurately predicted using this model. The model can provide some very useful information and a reliable basis for optimizing the process practice of the refining of stainless steel and control of the process in real time and online. 展开更多
关键词 stainless steel argon oxygen decarburization (AOD) process fluid flow and mixing back attack phenomenon non rotating and rotating gas jets DECARBURIZATION water modeling mathematical modeling.
下载PDF
Mathematical modeling of tornadoes and squall storms 被引量:3
14
作者 Sergey A.Arsen'yev 《Geoscience Frontiers》 SCIE CAS 2011年第2期215-221,共7页
Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional... Recent advances in modeling of tornadoes and twisters consist of significant achievements in mathematical calculation of occurrence and evolution of a violent F5-class tornado on the Fujita scale, and four-dimensional mathematical modeling of a tornado with the fourth coordinate time multiplied by its characteristic velocity. Such a tornado can arise in a thunderstorm supercell filled with turbulent whirlwinds. A theory of the squall storms is proposed. The squall storm is modeled by running pertur- bation of the temperature inversion on the lower boundary of cloudiness. This perturbation is induced by the action of strong, hurricane winds in the upper and middle troposphere, and looks like a running solitary wave (soliton); which is developed also in a field of pressure and velocity of a wind. If a soliton of a squall storm gets into the thunderstorm supercell then this soliton is captured by supercell. It leads to additional pressure fall of air inside a storm supercell and stimulate amplification of wind velocity here. As a result, a cyclostrophic balance inside a storm supercell generates a tornado. Comparison of the radial distribution of wind velocity inside a tornado calculated by using the new formulas and equations with radar observations of the wind velocity inside Texas Tornado Dummit in 1995 and inside the 3 May 1999 Oklahoma City Tornado shows good correspondence. 展开更多
关键词 TORNADOES Squall storm Atmosphere boundarylayer mathematical modeling
下载PDF
Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core 被引量:3
15
作者 M.GRYGOROWICZ E.MAGNUCKA-BLANDZI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1361-1374,共14页
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ... The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables. 展开更多
关键词 mathematical modelling dynamic stability metal foam core with variable mechanical property static and dynamic equilibrium path angular frequency
下载PDF
Mathematical modeling of elastic inverted pendulum control system 被引量:3
16
作者 ChaoXU XinYU 《控制理论与应用(英文版)》 EI 2004年第3期281-282,共2页
Inverted pendulums are important objects of theoretical investigation and experiment in the area of control theory and engineering. The researches concentrate on the rigid finite dimensional models which are described... Inverted pendulums are important objects of theoretical investigation and experiment in the area of control theory and engineering. The researches concentrate on the rigid finite dimensional models which are described by ordinary differential equations (ODEs) .Complete rigidity is the approximation of practical models ; Elasticity should be introduced into mathematical models in the analysis of system dynamics and integration of highly precise controller. A new kind of inverted pendulum, elastic inverted pendulum was proposed, and elasticity was considered. Mathematical model was derived from Hamiltonian principle and variational methods, which were formulated by the coupling of partial differential equations (PDE) and ODE. Because of infinite dimensional, system analysis and control of elastic inverted pendulum is more sophisticated than the rigid one. 展开更多
关键词 Elastic inverted pendulum Hamiltonian principle Variational methods mathematical model Coupling equation array
下载PDF
Mathematical Modeling of the Oxidation of Polyunsaturated Fatty Acids in Emulsions with Stirring and Limited Oxygen Compensation 被引量:2
17
作者 吕兵 陈洁 夏文水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第2期218-222,共5页
The oxidation of polyunsaturated fatty acids (PUFA) in emulsion with stirring and limited oxygen compensation was studied. A mathematical model of diffusion-oxidation was developed considering the mass transfer resi... The oxidation of polyunsaturated fatty acids (PUFA) in emulsion with stirring and limited oxygen compensation was studied. A mathematical model of diffusion-oxidation was developed considering the mass transfer resistance of a gas-liquid boundary, the resistance of the boundary layer from the emulsifier membrane, and the autocatalytic-type autoxidation reaction of PUFA. The dynamic mass transfer coefficient of the emulsifier membrane, k0, was introduced. The model was verified by comparing the predictions of the model with the experi- mental data. The results indicated that the model was in good agreement with the oxygen diffusion and linoleic acid oxidation in the emulsion, and showed good applicability in the prediction of the effect of the emulsifier type on the oxidation of PUFA in the emulsion. It indicated that the oxidation of PUFA in emulsions, with stirring and limited oxygen compensation from the atmosphere, was controlled mostly by mass transfer resistance from the emulsifier membrane. 展开更多
关键词 polyunsaturated fatty acids oxidation EMULSION mathematical model limited oxygen compensation
下载PDF
MATHEMATICAL AND PHYSICAL MODELING OF INTERFACIALPHENOMENA IN CONTINOUS CASTING MOULD WITH ARGONINJECTION THROUGH SUBMERGED ENTRV NOZZLE 被引量:2
18
作者 H. Lei, M. Y. Zhu and J.C. He (School of Materials and Metallurgy, Northeastern University, Shenyang 110006, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第5期1079-1086,共8页
The study on the fluid flow, meniscus oscillation, slag entrapment in continuous casting mould was conducted mathematically and experimentally. The results show that the injection of argon into submerged nozzle enhan... The study on the fluid flow, meniscus oscillation, slag entrapment in continuous casting mould was conducted mathematically and experimentally. The results show that the injection of argon into submerged nozzle enhances the meniscus oscillation, thus increases the probability of slag entrapment, and the critical argon blowing flow rate, which will give rise to slag entrapment, is around 10l/min. The trajectory of bubble is affected by the bubble diameter and the molten steel flow, and the bubble diameter is dominant. The bubble with diameter 1.4mm floats fastest with 0.47m/s terminal velocity. 展开更多
关键词 continuous casting mould argon injection meniscus oscillation slag entrapment mathematical and physical model
下载PDF
Mathematical Modeling of Carcinogenesis Based on Chromosome Aberration Data 被引量:1
19
作者 Xiao-bo Li 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2009年第3期240-246,共7页
Objective: The progression of human cancer is characterized by the accumulation of genetic instability. An increasing number of experimental genetic molecular techniques have been used to detect chromosome aberration... Objective: The progression of human cancer is characterized by the accumulation of genetic instability. An increasing number of experimental genetic molecular techniques have been used to detect chromosome aberrations. Previous studies on chromosome abnormalities often focused on identifying the frequent loci of chromosome alterations, but rarely addressed the issue of interrelationship of chromosomal abnormalities. In the last few years, several mathematical models have been employed to construct models of carcinogenesis, in an attempt to identify the time order and cause-and-effect relationship of chromosome aberrations. The principles and applications of these models are reviewed and compared in this paper. Mathematical modeling of carcinogenesis can contribute to our understanding of the molecular genetics of tumor development, and identification of cancer related genes, thus leading to improved clinical practice of cancer. 展开更多
关键词 CARCINOGENESIS Chromosome aberration mathematical model Tree model Bayesian network Multivariate analysis
下载PDF
Germanium transport across supported liquid membrane with Cyanex 923: Mathematical modeling 被引量:1
20
作者 Hossein KAMRAN HAGHIGHI Mehdi IRANNAJAD Ana MARIA SASTRE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1956-1966,共11页
A mathematical model was developed to monitor the facilitated transport of germanium(IV) from oxalic acid solutions through a flat sheet supported liquid membrane(FSSLM) containing four trialkylphosphine oxides(Cyanex... A mathematical model was developed to monitor the facilitated transport of germanium(IV) from oxalic acid solutions through a flat sheet supported liquid membrane(FSSLM) containing four trialkylphosphine oxides(Cyanex 923). The FSSLM modeling was based on the extraction constant(Kext) calculated from the liquid-liquid extraction(LLX) modeling. The LLX model presented a reliable calculation of the extraction constant(Kex= 2.057×103 L/mol4). The FSSLM model was solved using Matlab■ software according to extraction constant, Fick’s law, and diffusional principles. The model predicts the overall mass transfer coefficient(Korg) to be 3.84 cm/s. Using this value, diffusion coefficients(Dm) for various Cyanex 923 concentrations of 0.126, 0.252, 0.378, 0.505, 0.631 and 0.757 mol/L are found to be 8.50×10^-4, 4.30×10^-4, 1.87×10^-4, 5.87×10^-5, 2.57×10^-5, 2.09×10^-5 cm2/s, respectively. The results show that the diffusion rate of the current study is approximately more than that of similar FSSLM systems containing Cyanex 923 used to transport various metals. The modeling values are in good agreement with the experimental data, showing the good reliability of the mathematical model. 展开更多
关键词 supported liquid membrane Cyanex 923 GERMANIUM TRANSPORT mathematical modeling
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部