Yamdrok melange occurs south of, and parallel to, the Yarlung—Zangbo ophiolites, extending several hundreds of kilometres with a width of several to tens of kilometres. Areas near Baisa and Rilang in the Gyangze dist...Yamdrok melange occurs south of, and parallel to, the Yarlung—Zangbo ophiolites, extending several hundreds of kilometres with a width of several to tens of kilometres. Areas near Baisa and Rilang in the Gyangze district were chosen for detailed investigation in this study. Three months of field mapping (1∶1000 and 1∶50000) has been followed by laboratory investigation to extract radiolarians from cherty blocks and matrix material. Laboratory work is continuing..Field investigations in the Baisa area near Gyangze indicate the presence of three melange facies:broken formation, matrix\|rich facies, and block\|in\|matrix melange. Broken formation is characterized by disruption of layering by means of boudinage and pinching\|and\|swelling and dispersal of blocks within the finer\|grained shales due to layer\|parallel extension. Broken formation occurs mostly as dispersed but more\|or\|less traceable lenses within a foliated matrix. A transition from broken formation to typical block\|in\|matrix melange is observed in the field. Further disruption of broken formation leads to the formation of typical block\|in\|matrix melange either, by later shearing, or by suspected mud diapirism. Matrix\|rich facies is characterized by a dominance of shale matrix containing small granules of sandstone and other lithologies. This facies commonly is subject to later deformation, with disruption of the primary foliation into sigmoidal structures. Block\|in\|matrix facies is the most common melange facies and is characterized by blocks of different sizes, shapes and lithologies either encased in, or floating on, relatively finer\|grained arenaceous\|argillaceous matrix. Blocks range in size from several centimeters to several hundreds of meters, and have various shapes from phacoidal, elongate, to irregular. The blocks are mainly composed of varicolored cherts, greywacke and limestone as well as igneous rocks including serpentinite and basalt breccia. The matrix is mainly composed of dark argillaceous shales and siliceous shales, and partly of yellowish green greywacke. The injection or intrusion of mud matrix into blocks is quite common in this melange facies.展开更多
Lichi melange,located in the southern coastal range,eastern Taiwan,China,is a typical tectonic melange of the plate's boundary zone between the Eurasian Plate and the Philippine Sea Plate.It formed during the coll...Lichi melange,located in the southern coastal range,eastern Taiwan,China,is a typical tectonic melange of the plate's boundary zone between the Eurasian Plate and the Philippine Sea Plate.It formed during the collision of the Luzon arc with the Eurasian Continent (arc-continent collision).It is composed of sandstone and/or mudstone matrix and many kinds and sizes of rock fragments,including some sedimentary rocks,volcanic rocks and a few metamorphic rocks.The serpentinite is one of the common fragments in the Lichi melange.By the petrographic characteristics and the zircon U-Pb chronology analyses,protolith of the serpentinite is peridotite,the age is 17.7 ±0.5 Ma.Taking the tectonic background into account,it is inferred that the serpentinite (serpentinised peridotite)come from the forearc basin (the North Luzon Trough)and was taken into the melange by a second thrust westwards.The origin of the serpentimte in Lichi melange is helpful to understand the formation of the Lichi melange and can provide reliable detailed information for the study of the arc-continent collision orogenic activity in and offshore Taiwan.展开更多
The west Junggar,located in the eastern part of Balkash-Junggar tectonic province,is a major component of the core of the Central Asian metallogenic region.This area is characterized by occurrences of ophiolitic m...The west Junggar,located in the eastern part of Balkash-Junggar tectonic province,is a major component of the core of the Central Asian metallogenic region.This area is characterized by occurrences of ophiolitic mélanges,such as the Sartohay ophiolitic mélange in the NE and the Tangbale ophiolitic mélange in the west.As a hydrothermal alteration product of serpentinite in the Sartohay ophiolitic mélange,listwaenite lenses are gold-mineralized and crop out on surface in the ophiolitic mélange via weathering of exhumated hanging wall of fault zone.Listwaenite is mainly composed of magnesite,quartz,dolomite,and trace amounts of mariposite,chromian spinel,talc and sulfide.A vertical thermal gradient model for the hydrothermal alteration shows that serpentinite would first be transformed to talc schist,then into listwaenite as the ophiolite slices continued to rise along shear zone,with XCO2,oxygen and sulfur fugacity increase and temperature decrease.Both serpentine and magnetite were progressively destroyed during the transformation from serpentinite to talc schist,andcompletely vanished in listwaenite,while mariposite generated in weakly deformed to mylonitized listwaenite.Concentrations of most trace elements including high field strength elements and metallogenic elements,increasing from undeformed,through weakly deformed,to mylonitized listwaenite,show a positive correlation with deformation degree and content of apatite,rutile,monazite,zircon and sulfide in listwaenite.The shear zone served as pathways for percolation and accumulation of fluid and trace elements during the metasomatism from serpentinite to listwaenite.Compared to undeformed listwaenite,mylonitized listwaenite will be more favorable to be fractured and brecciated due to more intense shearing,which caused strong metasomatic reaction and then induced trace element-bearing mylonitized listwaenite.展开更多
Objective The Bayingou ophiolitic Tianshan Mountains of melange is located in Northerm the southern Central Asian Orogenic Belt which is the largest accretionary oroger among the European, Siberian, Tarim and North Ch...Objective The Bayingou ophiolitic Tianshan Mountains of melange is located in Northerm the southern Central Asian Orogenic Belt which is the largest accretionary oroger among the European, Siberian, Tarim and North Chine cratons. The Bayingou ophiolitic melange provide a critical geological record for unraveling regional tectonic histor) and testing different tectonic models. However, previous studies were mainly concentrated on geochronology, rock combination, structural feature and geochemistry ol ophiolite, with little attention to oceanic island basalts in the Bayingou ophiolitic melange. Therefore, in this study, we focus on pillow basalts from ophiolitic melange.展开更多
The Narooma-Batemans Bay(NBB)area along the southeast coast of Australia is a part of the eastern zone of the Early Paleozoic Lachlan Orogen.In the NBB,a set of rock association consisting of turbidites,siliceous rock...The Narooma-Batemans Bay(NBB)area along the southeast coast of Australia is a part of the eastern zone of the Early Paleozoic Lachlan Orogen.In the NBB,a set of rock association consisting of turbidites,siliceous rock,basic lava,and argillaceous melange zone is mainly developed.According to systematic field geological survey,the deformation of 3 stages(D1,D2,and D3)was identified in the NBB.At stage D1,with the original bedding S0 in a nearly east-west trending as the deformation plane,tight folds,isoclinal folds,and other structures formed in the NBB accompanied by structural transposition.As a result,crenulation cleavage developed along the axial plane of the folds and schistosity S1 formed.At stage D2,with north-south-trending schistosity S1 as the deformation plane,a large number of asymmetrical folds and rotated porphyroclasts formed owing to thrusting and shear.At stage D3,leftlateral strike-slip occurred along the main north-south-trending schistosity.Based on the analysis of the characteristics of tectonic deformation in the NBB and summary of previous research results,it is determined that the early-stage(D1)deformation is related to Ordovician Macquarie arc-continent collision and the deformation at stages D2 and D3 is the result of the westward subduction of Paleo-Pacific Plate.That is,it is not the continuous westward subduction of the Paleo-Pacific Plate that constitutes the evolution model of the NBB as previously considered.展开更多
Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the stru...Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the structural form of Jinshajiang melange belt, there are still a lots of structural block remained which carried amount of information about the tectonic evolution of the belt. Recent researches have identified several kinds of rock association in the structural blocks.(1) Ophiolite:The ophiolite consists of serpentinization ultramafite, ultramafic cumulus crystal rock (pyroxenite, dunite), gabbro, diabase cluster, ocean\|ridge type basalt, plagiogranite and radiolarian silicalite. The isotopic age shows that the ultramafite and basalt formed during Upper Carboniferous and Lower Permian. The silicalite is high in radiolaria of Lower Permian.(2) Rock association of oceanic island\|arc:The liptocoenosis of oceanic island\|arc scatter in melange belt, it mainly consists of sandy slate, pyroclastic rock, silicalite, basalt and andesite. A part of volcanic rock belongs to calc\|alkaline volcanic suite and the other is tholeiite. The petrochemistry, REE and microelement of volcanic rock have the feature of the rock in ocean\|island arc. The isotopic age of basalt shows that the ocean\|island arc formed in Lower Permian.展开更多
Yongzhu–Guomang Lake ophiolitic melange exposed about 100 km with large scale and complete ophiolitic uint in Xainza County,Xizang(Tibet).It is connected with Nam Lake,Kaimeng ophiolitic mélange to the east,and
On the basis of the synthetic studies of geology and geochemistry, an ophiolitic tectonic melange waa discovered in Sanligang-Sanyang area, the western part of Xiangfan-Guangji fault, the south margin of the Qinling O...On the basis of the synthetic studies of geology and geochemistry, an ophiolitic tectonic melange waa discovered in Sanligang-Sanyang area, the western part of Xiangfan-Guangji fault, the south margin of the Qinling Orogenic Belt. It is composed of different tectonic blocks with different lithological features and ages, mainly including the Huashan ophiolite blocks, Xiaofu Island-arc volcanic blocks, pelagic sediments, fore-arc volcanic-sedimentary system, and the massif of the basement and the covering strata of the Yangtze Block. These massifs were emplaced in the western part of Xiangfan-Guangji fault, the boundary between the Qinling Orogenic Belt and Yangtze Block, contacting each other by a shear zone or chaotic matrix. The characteristics of geochemistry indicate that the bash of the Huashan ophiolite are similar to mid-oceanic ridge basalts (MORB) formed in an initial oceanic baain, and the Xiaofu volcanic rocks are formed in a tectonic setting of island arc. The ophiolitic tectonic melange is the fragments of subduction wedge, which implies that there has been an oceanic basin between Qinling Block and Yangtze Block.展开更多
Major and trace elements are presented for the late Paleozoic radiolarian cherts, which were spatially associated with the NE Jiangxi ophiolite melange. These chert samples show relatively low SiO2 (78.40%-89.28%) and...Major and trace elements are presented for the late Paleozoic radiolarian cherts, which were spatially associated with the NE Jiangxi ophiolite melange. These chert samples show relatively low SiO2 (78.40%-89.28%) and high Al2O3 (3.42%-11.02%). Low Si/Al ratios (6.3-23) and tight negative correlation between Si/Al and Al2O3 of the samples indicate that they are muddy cherts containing high and variable contents of pelitic detritus. Geochemically, they are characterized by Al2O3/(Al2O3+Fe2O3) = 0.51-0.90, shale-normalized Lan/Cen = 0.76-1.11, Ce/Ce* = 0.91-1.22, V<20μg/g, V/Y<2.6 and Ti/V>40, resembling those of cherts formed in the continental margin regimes. It is therefore concluded that these late Paleozoic radiolarian muddy cherts were most likely formed in a continental margin regime, and not genetically related to the ophiolite suite in NE Jiangxi. It is also unlikely that an oceanic basin existed between the Yangtze and Cathaysia blocks during the late Paleozoic.展开更多
The Yinisala ophiolitic melange is located in the southern part of the Xiemisitai Mountains in western Junggar (NW China), and is composed of mafic-ultra mafic rocks, siliceous blocks, marble (marbleized limestone...The Yinisala ophiolitic melange is located in the southern part of the Xiemisitai Mountains in western Junggar (NW China), and is composed of mafic-ultra mafic rocks, siliceous blocks, marble (marbleized limestone) and pyroclastic rocks, which all crop out as faulted blocks. Rich radiolarian and sponge spicule fossils are found in the siliceous rock for the first time. There are six genera of radiolarians (including one gen. et sp. Indet.) belonging to two families: Inaniguttid gen. et sp. Indet., Inani- gutta sp., Inanibigutta sp., Inanihella bakanasensis (Nazarov), Triplococcus acanthicus (Danelian and Popov), Antygopora sp., which are identified to be of late Early to Middle Ordovician age, representing the upper limit of the formation age of the Yinisala ophiolite melange. The ophiolites were developed in the Early Cambrian-Middle Ordovician oceanic environment, probably an important part of the early Paleozoic Paleo-Asian Ocean, based on the composition and structure of the siliceous rock and associated deep-water fossils. The Yinisala, Taerbahatai, and Hongguleleng ophiolitic melange belts can be correlated as a suite of unified subduction accretionary complex, which extends eastward to the eastern Junggar. We consider that there existed an ancient ocean connecting the east and west of northern Junggar in the Early Cambrian-Middle Ordovician.展开更多
Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especial...Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especially for study of deep fault belt展开更多
The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rock...The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rocks, carbonates and cherts. Some ultra-basic rocks (blocks) punctuate the formation. The formation was variously assigned to Silurian-Middle Devonian, Silurian-Lower Devonian, and pre-Devonian, mainly based on Atrypa bodini Mansuy, Hypothyridina parallelepipedia (Brour.) and Prismatophyllum hexagonum Yoh collected from the limestone interlayers, respectively. However, radiolarian fossils obtained from 24 chert specimens of the Wupata'erkan Group, mainly include Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon, Albaillella sp. cf. A. indensis Won, Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto, Albaillella sp. and Latentifistulidae gen. et. sp. indet., are earliest Carboniferous and Late Permian. The earliest Carboniferous assemblage is characterized by Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon and Albaillella sp. cf. A. indensis Won, and the Late Permian assemblage by Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto. This new stratigraphic evidence indicates that the Wupata'erkan Group is possibly composed of rocks with different ages from Silurian to Permian, and therefore, it is probably an ophiolite melange. The discovery of Late Permian Albaillella sp. cf. A. excelsa provides more reliable evidence supporting the existence of a Permian relic ancient oceanic basin in the western part of Xinjiang South Tianshan.展开更多
The Dabie Mountains are believed to be a collisional orogenic belt between the Yangtze amd Sino-Koreancontinental plates. It is composed of the foreland fold-thrust zone, the subducting cover and basement of theYangtz...The Dabie Mountains are believed to be a collisional orogenic belt between the Yangtze amd Sino-Koreancontinental plates. It is composed of the foreland fold-thrust zone, the subducting cover and basement of theYangtze continental plate, the coesite- and diamond-bearing ultra-high pressure metamorphic zone and themeta-ophiolitic melange zone in the subducting basement, the fore-arc flysch nappe and the back thrust zoneoccurring respectively on the southern and northern margins of the Sino-Korean continental plate and the in-herited basin with molassic deposits on the northern margin. When the palaeo-Dabie oceanic plate subductednorthward in the Early Palaeozoic, volcanic arc and back arc basin probably formed on the southern margin ofthe Sino-Korean continental plate. The Sm / Nd isotopic dating of the strata and eclogite which were drawn in-to the foreland fold-thrust zone indicates that the intense collision of the two continental plates took place inthe Early Mesozoic.展开更多
The Guomangco ophiolitic melange is situated in the middle part of the Shiquanhe- Yongzhu-Jiali ophiolitic melange belt (SYJMB) and possesses all the subunits of a typical Penrose- type ophiolite pseudostratigraphy....The Guomangco ophiolitic melange is situated in the middle part of the Shiquanhe- Yongzhu-Jiali ophiolitic melange belt (SYJMB) and possesses all the subunits of a typical Penrose- type ophiolite pseudostratigraphy. The study of the Guomangco ophiolitic melange is very important for investigating the tectonic evolution of the SYJMB. The mafic rocks of this ophiolitic melange mainly include diabases, sillite dikes, and basalts. Geochemical analysis shows that these dikes mostly have E-MORB major and trace element signatures; this is the first time that this has been observed in the SYJMB. The basalts have N-MORB and IAB affinities, and the mineral chemistry of harzburgites shows a composition similar to that of SSZ peridotites, indicating that the Guomangco ophiolitic melange probably originated in a back-arc basin. The Guomangco back-arc basin opened in the Middle Jurassic, which was caused by southward subduction of the Neo-Tethys Ocean in central Tibet. The main spreading of this back-arc basin occurred during the Late Jurassic, and the basalts were formed during this time. With the development of the back-arc basin, the subducted slab gradually retreated, and new mantle convection occurred in the mantle wedge. The recycling may have caused the metasomatized mantle to undergo a high degree of partial melting and to generate E- MORBs in the Early Cretaceous. E-MORB-type dikes probably crystallized from melts produced by about 20%-30% partial melting of a spinel mantle source, which was metasomatized by melts from low-degree partial melting of the subducted slab.展开更多
Based on the results of four regional geological surveys of 1: 50000 including Shulan County map in Jilin,taking Shulan area as the study area,the authors re-delineated the rock type assemblages,e.g. metamorphic rhyol...Based on the results of four regional geological surveys of 1: 50000 including Shulan County map in Jilin,taking Shulan area as the study area,the authors re-delineated the rock type assemblages,e.g. metamorphic rhyolite,metamorphic tuffaceous breccia lava,sericite-quartz schist and tremolite altered rock,etc.,and the structural contacts between them. With the help of in-situ LA-ICP-MS U-Pb dating for zircons,it is concluded that the zircon crystallization ages of the metamorphic rhyolite,the metamorphic andesitic tuff breccia lava and the tremolite altered rock are 339. 1 ± 1. 3 Ma( n = 27,MSWD = 0. 78),351. 8 ± 1. 7 Ma( n = 21,MSWD = 0.82),and 362.0±1.8 Ma( n = 43,MSWD = 2.2) respectively. The metamorphic complex is actually a set of tectonic melange which comprises the rocks in different types,sources,times,or tectonic settings,and was formed by tectonism.展开更多
Collision and amalgamation of continent and microcontinent block were recognized as one of the major processes for building up a continent. The pre Jurassic structure of Northeast China and its adjacent region (inclu...Collision and amalgamation of continent and microcontinent block were recognized as one of the major processes for building up a continent. The pre Jurassic structure of Northeast China and its adjacent region (including south of Russia Far East, north of North Korea and inner part of southwest Japan) is characterized by collision and amalgamation of microcontinent blocks, such as the North China block (NCB), Northeast China block (NECB), Khanka block and Hida block.The central Jilin belt and Yanbian Grodekovsk belt that juxtapose and amalgamate these blocks in between in Northeast China and its vicinity were formed by a series of rock assemblages that are typical for Paleozoic active continental margin island arcs. The dominant Permian marine sequences in Yanbian (Yanbian Grodekovsk) belt, which are known for bearing transitional marine fauna, include turbidite olistostrome sediments of a slope facies, and limestones, sandstones as well as siltstones of a neritic littoral facies sediments along with predominant acidic to intermediate volcanic materials. The Maizuru belt in southwest Japan is supposed to be the equivalent of Yanbian Grodekovsk belt. The central Jilin belt consists of a well developed sedimentary sequence and volcanics of Paleozoic. The Bamiantong Gudonghe Fuerhe Chongjin suture complex in Northeast China and the equivalent Sangun Akiyoshi belt in southwest Japan serve as a major suture zone among these microcontinental blocks and belts.展开更多
The relationships and boundary between the North China and Tarim plates have been unclear for a long time ; however, the two plates occupy a prominent position in the formation and evolution of the continental lithosp...The relationships and boundary between the North China and Tarim plates have been unclear for a long time ; however, the two plates occupy a prominent position in the formation and evolution of the continental lithosphere of China. It is proposed that the Engger Us ophiolitic melange zone discovered recently north of Alaxa is a typical suture between the two plates. The ophiolitic melange zone is composed mainly of a mixture of fragments of ancient oceanic crust and sedimentary rocks of active and passive continental margins. The melange may be divided into tectonic inclusions and matrix. The suture extends northeastwards into the Republic of Mongolia and probably westwards to meet the Altun fault. With the Engger Us ophiolitic melange zone as the boundary the Alaxa area may be divided into two parts: the northern part (AN ) belongs to the Tarim plate, while the southern part (AS) the North China plate. Geological evidence shows that the two plates were amalgamated in the Late Permian or a bit later.展开更多
In this study,we investigated Early Paleozoic magmatic rocks of the Manlai Formation exposed along the eastern margin of the Lancang terrane to better understand the tectonic history of the Proto-Tethys.We present pet...In this study,we investigated Early Paleozoic magmatic rocks of the Manlai Formation exposed along the eastern margin of the Lancang terrane to better understand the tectonic history of the Proto-Tethys.We present petrological,geochemical and whole-rock Sr-Nd and zircon Hf isotopic data for basalts and gabbros sampled from the Qianmai mélange.Zircon grains from six basaltic and gabbroic samples yielded U-Pb ages of 495-482 Ma.These rocks are characterized by tholeiitic and Nbenriched compositions,with Nb/La ratios in the range of 0.38-1.38,similar to the typical Nb-enriched basalts.All the mafic rocks show slightly negative to positiveε_(Nd)(t)(-1.67 to+4.32)and zirconε_(Hf)(t)values(-7.3 to+3.8).Elemental and isotopic data suggest that the Qianmai Nb-enriched mafic rocks were mainly derived from the mixing of an OIB-like source with a subduction-modified mantle wedge source.Together with magmatic and sedimentary records of similar ages in the Lancang terrane and the Baoshan Block,our results reveal Early Paleozoic magmatic and sedimentary sequences along an active margin of the Proto-Tethys.Taking into account the recently identified Early Paleozoic ophiolitic mélange in the Yunxian-Menghai belt,we consider the Qianmai magmatic rocks to represent the products of early-stage subduction-related magmatism within a primitive island arc or fore-arc setting associated with the southward subduction of the Proto-Tethys.We infer that prolonged south-dipping subduction on the northern margin of Gondwana persisted from the Cambrian to the Late Ordovician.展开更多
New paleontological evidence suggests that the composition of the matrix and slices from the middle and the south of the Eastern Kunlun Mélange Belt is very complex, ranging from Proterozoic to Mesozoic in geolog...New paleontological evidence suggests that the composition of the matrix and slices from the middle and the south of the Eastern Kunlun Mélange Belt is very complex, ranging from Proterozoic to Mesozoic in geological time. A Cambrian acritarch assemblage has been discovered from the middle part of the Eastern Kunlun Mélange, a Neoproterozoic to the early Paleozoic acritarch assemblage has been discovered from the south of the Eastern Kunlun Mé lange, and so has been an Early Permian radiolarian from the A’nyemaqen Mélange in Buqing- shan. In addition, some sporopollen has been obtained from the Mesozoic tectonic slices. The above-mentioned paleontological evidence indicates that the Eastern Kunlun Orogenic Belt experienced two episodes from ocean to continent from the Neoproterozoic to the Early Paleo- zoic and in the Late Paleozoic respectively. In the process of intracontinent development in Mesozoic, because of heavy thrust-nappe, strike-slip sheer and crust shortening, the Mesozoic formation was intercalated in mélange by slices and the Eastern Kunlun Orogenic Belt became more complex.展开更多
文摘Yamdrok melange occurs south of, and parallel to, the Yarlung—Zangbo ophiolites, extending several hundreds of kilometres with a width of several to tens of kilometres. Areas near Baisa and Rilang in the Gyangze district were chosen for detailed investigation in this study. Three months of field mapping (1∶1000 and 1∶50000) has been followed by laboratory investigation to extract radiolarians from cherty blocks and matrix material. Laboratory work is continuing..Field investigations in the Baisa area near Gyangze indicate the presence of three melange facies:broken formation, matrix\|rich facies, and block\|in\|matrix melange. Broken formation is characterized by disruption of layering by means of boudinage and pinching\|and\|swelling and dispersal of blocks within the finer\|grained shales due to layer\|parallel extension. Broken formation occurs mostly as dispersed but more\|or\|less traceable lenses within a foliated matrix. A transition from broken formation to typical block\|in\|matrix melange is observed in the field. Further disruption of broken formation leads to the formation of typical block\|in\|matrix melange either, by later shearing, or by suspected mud diapirism. Matrix\|rich facies is characterized by a dominance of shale matrix containing small granules of sandstone and other lithologies. This facies commonly is subject to later deformation, with disruption of the primary foliation into sigmoidal structures. Block\|in\|matrix facies is the most common melange facies and is characterized by blocks of different sizes, shapes and lithologies either encased in, or floating on, relatively finer\|grained arenaceous\|argillaceous matrix. Blocks range in size from several centimeters to several hundreds of meters, and have various shapes from phacoidal, elongate, to irregular. The blocks are mainly composed of varicolored cherts, greywacke and limestone as well as igneous rocks including serpentinite and basalt breccia. The matrix is mainly composed of dark argillaceous shales and siliceous shales, and partly of yellowish green greywacke. The injection or intrusion of mud matrix into blocks is quite common in this melange facies.
基金Geological Survey Program of China Geological Survey (DD20160218, DD20160137)the National Natural Science Foundation of China (41506083,41606086,41606087,41606050, 91858208)National Key Research and Development Program of China (2017 YFC0307600,2017YFC0307704).
文摘Lichi melange,located in the southern coastal range,eastern Taiwan,China,is a typical tectonic melange of the plate's boundary zone between the Eurasian Plate and the Philippine Sea Plate.It formed during the collision of the Luzon arc with the Eurasian Continent (arc-continent collision).It is composed of sandstone and/or mudstone matrix and many kinds and sizes of rock fragments,including some sedimentary rocks,volcanic rocks and a few metamorphic rocks.The serpentinite is one of the common fragments in the Lichi melange.By the petrographic characteristics and the zircon U-Pb chronology analyses,protolith of the serpentinite is peridotite,the age is 17.7 ±0.5 Ma.Taking the tectonic background into account,it is inferred that the serpentinite (serpentinised peridotite)come from the forearc basin (the North Luzon Trough)and was taken into the melange by a second thrust westwards.The origin of the serpentimte in Lichi melange is helpful to understand the formation of the Lichi melange and can provide reliable detailed information for the study of the arc-continent collision orogenic activity in and offshore Taiwan.
基金Financial support was provided by the International Sciences & Technology Cooperation Program of China (Grant No. 2010DFB23390)the National Natural Science Foundation of China (Grant No. 41372062)
文摘The west Junggar,located in the eastern part of Balkash-Junggar tectonic province,is a major component of the core of the Central Asian metallogenic region.This area is characterized by occurrences of ophiolitic mélanges,such as the Sartohay ophiolitic mélange in the NE and the Tangbale ophiolitic mélange in the west.As a hydrothermal alteration product of serpentinite in the Sartohay ophiolitic mélange,listwaenite lenses are gold-mineralized and crop out on surface in the ophiolitic mélange via weathering of exhumated hanging wall of fault zone.Listwaenite is mainly composed of magnesite,quartz,dolomite,and trace amounts of mariposite,chromian spinel,talc and sulfide.A vertical thermal gradient model for the hydrothermal alteration shows that serpentinite would first be transformed to talc schist,then into listwaenite as the ophiolite slices continued to rise along shear zone,with XCO2,oxygen and sulfur fugacity increase and temperature decrease.Both serpentine and magnetite were progressively destroyed during the transformation from serpentinite to talc schist,andcompletely vanished in listwaenite,while mariposite generated in weakly deformed to mylonitized listwaenite.Concentrations of most trace elements including high field strength elements and metallogenic elements,increasing from undeformed,through weakly deformed,to mylonitized listwaenite,show a positive correlation with deformation degree and content of apatite,rutile,monazite,zircon and sulfide in listwaenite.The shear zone served as pathways for percolation and accumulation of fluid and trace elements during the metasomatism from serpentinite to listwaenite.Compared to undeformed listwaenite,mylonitized listwaenite will be more favorable to be fractured and brecciated due to more intense shearing,which caused strong metasomatic reaction and then induced trace element-bearing mylonitized listwaenite.
基金financially supported by the National Nature Science Foundation of China(41303027, 41273033)Special Fund for Basic Scientific Research of Central Colleges,Chang'an University(grants no. 310827153506 and 310827153407)
文摘Objective The Bayingou ophiolitic Tianshan Mountains of melange is located in Northerm the southern Central Asian Orogenic Belt which is the largest accretionary oroger among the European, Siberian, Tarim and North Chine cratons. The Bayingou ophiolitic melange provide a critical geological record for unraveling regional tectonic histor) and testing different tectonic models. However, previous studies were mainly concentrated on geochronology, rock combination, structural feature and geochemistry ol ophiolite, with little attention to oceanic island basalts in the Bayingou ophiolitic melange. Therefore, in this study, we focus on pillow basalts from ophiolitic melange.
基金This research was supported financially by the National Natural Science(41702213)Fundamental Research Funds of the Chinese Academy of Geological Sciences(K1614,YYWF201709).
文摘The Narooma-Batemans Bay(NBB)area along the southeast coast of Australia is a part of the eastern zone of the Early Paleozoic Lachlan Orogen.In the NBB,a set of rock association consisting of turbidites,siliceous rock,basic lava,and argillaceous melange zone is mainly developed.According to systematic field geological survey,the deformation of 3 stages(D1,D2,and D3)was identified in the NBB.At stage D1,with the original bedding S0 in a nearly east-west trending as the deformation plane,tight folds,isoclinal folds,and other structures formed in the NBB accompanied by structural transposition.As a result,crenulation cleavage developed along the axial plane of the folds and schistosity S1 formed.At stage D2,with north-south-trending schistosity S1 as the deformation plane,a large number of asymmetrical folds and rotated porphyroclasts formed owing to thrusting and shear.At stage D3,leftlateral strike-slip occurred along the main north-south-trending schistosity.Based on the analysis of the characteristics of tectonic deformation in the NBB and summary of previous research results,it is determined that the early-stage(D1)deformation is related to Ordovician Macquarie arc-continent collision and the deformation at stages D2 and D3 is the result of the westward subduction of Paleo-Pacific Plate.That is,it is not the continuous westward subduction of the Paleo-Pacific Plate that constitutes the evolution model of the NBB as previously considered.
文摘Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the structural form of Jinshajiang melange belt, there are still a lots of structural block remained which carried amount of information about the tectonic evolution of the belt. Recent researches have identified several kinds of rock association in the structural blocks.(1) Ophiolite:The ophiolite consists of serpentinization ultramafite, ultramafic cumulus crystal rock (pyroxenite, dunite), gabbro, diabase cluster, ocean\|ridge type basalt, plagiogranite and radiolarian silicalite. The isotopic age shows that the ultramafite and basalt formed during Upper Carboniferous and Lower Permian. The silicalite is high in radiolaria of Lower Permian.(2) Rock association of oceanic island\|arc:The liptocoenosis of oceanic island\|arc scatter in melange belt, it mainly consists of sandy slate, pyroclastic rock, silicalite, basalt and andesite. A part of volcanic rock belongs to calc\|alkaline volcanic suite and the other is tholeiite. The petrochemistry, REE and microelement of volcanic rock have the feature of the rock in ocean\|island arc. The isotopic age of basalt shows that the ocean\|island arc formed in Lower Permian.
文摘Yongzhu–Guomang Lake ophiolitic melange exposed about 100 km with large scale and complete ophiolitic uint in Xainza County,Xizang(Tibet).It is connected with Nam Lake,Kaimeng ophiolitic mélange to the east,and
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 49773187, 49732080).
文摘On the basis of the synthetic studies of geology and geochemistry, an ophiolitic tectonic melange waa discovered in Sanligang-Sanyang area, the western part of Xiangfan-Guangji fault, the south margin of the Qinling Orogenic Belt. It is composed of different tectonic blocks with different lithological features and ages, mainly including the Huashan ophiolite blocks, Xiaofu Island-arc volcanic blocks, pelagic sediments, fore-arc volcanic-sedimentary system, and the massif of the basement and the covering strata of the Yangtze Block. These massifs were emplaced in the western part of Xiangfan-Guangji fault, the boundary between the Qinling Orogenic Belt and Yangtze Block, contacting each other by a shear zone or chaotic matrix. The characteristics of geochemistry indicate that the bash of the Huashan ophiolite are similar to mid-oceanic ridge basalts (MORB) formed in an initial oceanic baain, and the Xiaofu volcanic rocks are formed in a tectonic setting of island arc. The ophiolitic tectonic melange is the fragments of subduction wedge, which implies that there has been an oceanic basin between Qinling Block and Yangtze Block.
文摘Major and trace elements are presented for the late Paleozoic radiolarian cherts, which were spatially associated with the NE Jiangxi ophiolite melange. These chert samples show relatively low SiO2 (78.40%-89.28%) and high Al2O3 (3.42%-11.02%). Low Si/Al ratios (6.3-23) and tight negative correlation between Si/Al and Al2O3 of the samples indicate that they are muddy cherts containing high and variable contents of pelitic detritus. Geochemically, they are characterized by Al2O3/(Al2O3+Fe2O3) = 0.51-0.90, shale-normalized Lan/Cen = 0.76-1.11, Ce/Ce* = 0.91-1.22, V<20μg/g, V/Y<2.6 and Ti/V>40, resembling those of cherts formed in the continental margin regimes. It is therefore concluded that these late Paleozoic radiolarian muddy cherts were most likely formed in a continental margin regime, and not genetically related to the ophiolite suite in NE Jiangxi. It is also unlikely that an oceanic basin existed between the Yangtze and Cathaysia blocks during the late Paleozoic.
基金supported by China Geological Survey(Grant No.1212011120502)National Natural Science Foundation of China(Grant Nos.41472001,41290260)the Special Research Fund for the Doctoral Program of Higher Education of China(Grant No.2012014-5110012)
文摘The Yinisala ophiolitic melange is located in the southern part of the Xiemisitai Mountains in western Junggar (NW China), and is composed of mafic-ultra mafic rocks, siliceous blocks, marble (marbleized limestone) and pyroclastic rocks, which all crop out as faulted blocks. Rich radiolarian and sponge spicule fossils are found in the siliceous rock for the first time. There are six genera of radiolarians (including one gen. et sp. Indet.) belonging to two families: Inaniguttid gen. et sp. Indet., Inani- gutta sp., Inanibigutta sp., Inanihella bakanasensis (Nazarov), Triplococcus acanthicus (Danelian and Popov), Antygopora sp., which are identified to be of late Early to Middle Ordovician age, representing the upper limit of the formation age of the Yinisala ophiolite melange. The ophiolites were developed in the Early Cambrian-Middle Ordovician oceanic environment, probably an important part of the early Paleozoic Paleo-Asian Ocean, based on the composition and structure of the siliceous rock and associated deep-water fossils. The Yinisala, Taerbahatai, and Hongguleleng ophiolitic melange belts can be correlated as a suite of unified subduction accretionary complex, which extends eastward to the eastern Junggar. We consider that there existed an ancient ocean connecting the east and west of northern Junggar in the Early Cambrian-Middle Ordovician.
文摘Metamorphic basement is widespread in northeastern Jiangxi Province withcomplicated geological structure and enriched polymetallic deposits. It is one of the impor-tant areas for geological research in China, especially for study of deep fault belt
基金the National Natural Science Foundation of China(Grant 40072077) the Tarim Oil Field Company.PetroChina(Grant 2098050230).
文摘The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rocks, carbonates and cherts. Some ultra-basic rocks (blocks) punctuate the formation. The formation was variously assigned to Silurian-Middle Devonian, Silurian-Lower Devonian, and pre-Devonian, mainly based on Atrypa bodini Mansuy, Hypothyridina parallelepipedia (Brour.) and Prismatophyllum hexagonum Yoh collected from the limestone interlayers, respectively. However, radiolarian fossils obtained from 24 chert specimens of the Wupata'erkan Group, mainly include Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon, Albaillella sp. cf. A. indensis Won, Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto, Albaillella sp. and Latentifistulidae gen. et. sp. indet., are earliest Carboniferous and Late Permian. The earliest Carboniferous assemblage is characterized by Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon and Albaillella sp. cf. A. indensis Won, and the Late Permian assemblage by Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto. This new stratigraphic evidence indicates that the Wupata'erkan Group is possibly composed of rocks with different ages from Silurian to Permian, and therefore, it is probably an ophiolite melange. The discovery of Late Permian Albaillella sp. cf. A. excelsa provides more reliable evidence supporting the existence of a Permian relic ancient oceanic basin in the western part of Xinjiang South Tianshan.
文摘The Dabie Mountains are believed to be a collisional orogenic belt between the Yangtze amd Sino-Koreancontinental plates. It is composed of the foreland fold-thrust zone, the subducting cover and basement of theYangtze continental plate, the coesite- and diamond-bearing ultra-high pressure metamorphic zone and themeta-ophiolitic melange zone in the subducting basement, the fore-arc flysch nappe and the back thrust zoneoccurring respectively on the southern and northern margins of the Sino-Korean continental plate and the in-herited basin with molassic deposits on the northern margin. When the palaeo-Dabie oceanic plate subductednorthward in the Early Palaeozoic, volcanic arc and back arc basin probably formed on the southern margin ofthe Sino-Korean continental plate. The Sm / Nd isotopic dating of the strata and eclogite which were drawn in-to the foreland fold-thrust zone indicates that the intense collision of the two continental plates took place inthe Early Mesozoic.
基金funded by the National Funds of Nature Science of China (Grant No. 41272240)the Project of China Geological Survey (Grant No. 1212011121248)
文摘The Guomangco ophiolitic melange is situated in the middle part of the Shiquanhe- Yongzhu-Jiali ophiolitic melange belt (SYJMB) and possesses all the subunits of a typical Penrose- type ophiolite pseudostratigraphy. The study of the Guomangco ophiolitic melange is very important for investigating the tectonic evolution of the SYJMB. The mafic rocks of this ophiolitic melange mainly include diabases, sillite dikes, and basalts. Geochemical analysis shows that these dikes mostly have E-MORB major and trace element signatures; this is the first time that this has been observed in the SYJMB. The basalts have N-MORB and IAB affinities, and the mineral chemistry of harzburgites shows a composition similar to that of SSZ peridotites, indicating that the Guomangco ophiolitic melange probably originated in a back-arc basin. The Guomangco back-arc basin opened in the Middle Jurassic, which was caused by southward subduction of the Neo-Tethys Ocean in central Tibet. The main spreading of this back-arc basin occurred during the Late Jurassic, and the basalts were formed during this time. With the development of the back-arc basin, the subducted slab gradually retreated, and new mantle convection occurred in the mantle wedge. The recycling may have caused the metasomatized mantle to undergo a high degree of partial melting and to generate E- MORBs in the Early Cretaceous. E-MORB-type dikes probably crystallized from melts produced by about 20%-30% partial melting of a spinel mantle source, which was metasomatized by melts from low-degree partial melting of the subducted slab.
基金Supported by projects of China Geological Survey(Nos.DD20160049,12120114029101)
文摘Based on the results of four regional geological surveys of 1: 50000 including Shulan County map in Jilin,taking Shulan area as the study area,the authors re-delineated the rock type assemblages,e.g. metamorphic rhyolite,metamorphic tuffaceous breccia lava,sericite-quartz schist and tremolite altered rock,etc.,and the structural contacts between them. With the help of in-situ LA-ICP-MS U-Pb dating for zircons,it is concluded that the zircon crystallization ages of the metamorphic rhyolite,the metamorphic andesitic tuff breccia lava and the tremolite altered rock are 339. 1 ± 1. 3 Ma( n = 27,MSWD = 0. 78),351. 8 ± 1. 7 Ma( n = 21,MSWD = 0.82),and 362.0±1.8 Ma( n = 43,MSWD = 2.2) respectively. The metamorphic complex is actually a set of tectonic melange which comprises the rocks in different types,sources,times,or tectonic settings,and was formed by tectonism.
文摘Collision and amalgamation of continent and microcontinent block were recognized as one of the major processes for building up a continent. The pre Jurassic structure of Northeast China and its adjacent region (including south of Russia Far East, north of North Korea and inner part of southwest Japan) is characterized by collision and amalgamation of microcontinent blocks, such as the North China block (NCB), Northeast China block (NECB), Khanka block and Hida block.The central Jilin belt and Yanbian Grodekovsk belt that juxtapose and amalgamate these blocks in between in Northeast China and its vicinity were formed by a series of rock assemblages that are typical for Paleozoic active continental margin island arcs. The dominant Permian marine sequences in Yanbian (Yanbian Grodekovsk) belt, which are known for bearing transitional marine fauna, include turbidite olistostrome sediments of a slope facies, and limestones, sandstones as well as siltstones of a neritic littoral facies sediments along with predominant acidic to intermediate volcanic materials. The Maizuru belt in southwest Japan is supposed to be the equivalent of Yanbian Grodekovsk belt. The central Jilin belt consists of a well developed sedimentary sequence and volcanics of Paleozoic. The Bamiantong Gudonghe Fuerhe Chongjin suture complex in Northeast China and the equivalent Sangun Akiyoshi belt in southwest Japan serve as a major suture zone among these microcontinental blocks and belts.
基金Project 9487001 supported by the National Natural Science Foundation of Chinathe Analysis Centre of the Zhongguancun Distrjct of Beijing
文摘The relationships and boundary between the North China and Tarim plates have been unclear for a long time ; however, the two plates occupy a prominent position in the formation and evolution of the continental lithosphere of China. It is proposed that the Engger Us ophiolitic melange zone discovered recently north of Alaxa is a typical suture between the two plates. The ophiolitic melange zone is composed mainly of a mixture of fragments of ancient oceanic crust and sedimentary rocks of active and passive continental margins. The melange may be divided into tectonic inclusions and matrix. The suture extends northeastwards into the Republic of Mongolia and probably westwards to meet the Altun fault. With the Engger Us ophiolitic melange zone as the boundary the Alaxa area may be divided into two parts: the northern part (AN ) belongs to the Tarim plate, while the southern part (AS) the North China plate. Geological evidence shows that the two plates were amalgamated in the Late Permian or a bit later.
基金supported by projects from the“Xingdian Talent”Youth Talent Program in Yunnan Province(No.XDYCQNRC-2022-0041)the National Natural Science Foundation of China(Nos.42162020,41873062,92055314)。
文摘In this study,we investigated Early Paleozoic magmatic rocks of the Manlai Formation exposed along the eastern margin of the Lancang terrane to better understand the tectonic history of the Proto-Tethys.We present petrological,geochemical and whole-rock Sr-Nd and zircon Hf isotopic data for basalts and gabbros sampled from the Qianmai mélange.Zircon grains from six basaltic and gabbroic samples yielded U-Pb ages of 495-482 Ma.These rocks are characterized by tholeiitic and Nbenriched compositions,with Nb/La ratios in the range of 0.38-1.38,similar to the typical Nb-enriched basalts.All the mafic rocks show slightly negative to positiveε_(Nd)(t)(-1.67 to+4.32)and zirconε_(Hf)(t)values(-7.3 to+3.8).Elemental and isotopic data suggest that the Qianmai Nb-enriched mafic rocks were mainly derived from the mixing of an OIB-like source with a subduction-modified mantle wedge source.Together with magmatic and sedimentary records of similar ages in the Lancang terrane and the Baoshan Block,our results reveal Early Paleozoic magmatic and sedimentary sequences along an active margin of the Proto-Tethys.Taking into account the recently identified Early Paleozoic ophiolitic mélange in the Yunxian-Menghai belt,we consider the Qianmai magmatic rocks to represent the products of early-stage subduction-related magmatism within a primitive island arc or fore-arc setting associated with the southward subduction of the Proto-Tethys.We infer that prolonged south-dipping subduction on the northern margin of Gondwana persisted from the Cambrian to the Late Ordovician.
文摘New paleontological evidence suggests that the composition of the matrix and slices from the middle and the south of the Eastern Kunlun Mélange Belt is very complex, ranging from Proterozoic to Mesozoic in geological time. A Cambrian acritarch assemblage has been discovered from the middle part of the Eastern Kunlun Mélange, a Neoproterozoic to the early Paleozoic acritarch assemblage has been discovered from the south of the Eastern Kunlun Mé lange, and so has been an Early Permian radiolarian from the A’nyemaqen Mélange in Buqing- shan. In addition, some sporopollen has been obtained from the Mesozoic tectonic slices. The above-mentioned paleontological evidence indicates that the Eastern Kunlun Orogenic Belt experienced two episodes from ocean to continent from the Neoproterozoic to the Early Paleo- zoic and in the Late Paleozoic respectively. In the process of intracontinent development in Mesozoic, because of heavy thrust-nappe, strike-slip sheer and crust shortening, the Mesozoic formation was intercalated in mélange by slices and the Eastern Kunlun Orogenic Belt became more complex.