期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Laser Synthesis and Microfabrication of Micro/ Nanostructured Materials Toward Energy Conversion and Storage 被引量:12
1
作者 Lili Zhao Zhen Liu +6 位作者 Duo Chen Fan Liu Zhiyuan Yang Xiao Li Haohai Yu Hong Liu Weijia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期107-154,共48页
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics device... Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development. 展开更多
关键词 Laser synthesis Laser microfabrication Micro/nanostructured materials Energy conversion and storage
下载PDF
Laser-induced microjet-assisted ablation for high-quality microfabrication 被引量:6
2
作者 Yang Guo Pei Qiu +1 位作者 Shaolin Xu Gary J Cheng 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第3期122-130,共9页
Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debri... Liquid-assisted laser ablation has the advantage of relieving thermal effects of common laser ablation processes, whereas the light scattering and shielding effects by laser-induced cavitation bubbles, suspended debris, and turbulent liquid flow generally deteriorate laser beam transmission stability, leading to low energy efficiency and poor surface quality. Here, we report that a continuous and directional high-speed microjet will form in the laser ablation zone if laser-induced primary cavitation bubbles asymmetrically collapse sequentially near the air-liquid interface under a critical thin liquid layer. The laser-induced microjet can instantaneously and directionally remove secondary bubbles and ablation debris around the laser ablation region, and thus a very stable material removal process can be obtained. The shadowgraphs of high-speed camera reveal that the average speed of laser-induced continuous microjet can be as high as 1.1 m sin its initial 500 μm displacement. The coupling effect of laser ablation, mechanical impact along with the collapse of cavitation bubbles and flushing of high-speed microjet helps achieve a high material removal rate and significantly improved surface quality. We name this uncovered liquid-assisted laser ablation process as laser-induced microjet-assisted ablation(LIMJAA) based on its unique characteristics. High-quality microgrooves with a large depth-to-width ratio of 5.2 are obtained by LIMJAA with a single-pass laser scanning process in our experiments. LIMJAA is capable of machining various types of difficult-to-process materials with high-quality arrays of micro-channels, square and circle microscale through-holes. The results and disclosed mechanisms in our work provide a deep understanding of the role of laser-induced microjet in improving the processing quality of liquid-assisted laser micromachining. 展开更多
关键词 liquid-assisted laser ablation laser-induced microjet cavitation bubbles laser microfabrication
下载PDF
Etching-assisted femtosecond laser microfabrication 被引量:3
3
作者 Monan Liu Mu-Tian Li +1 位作者 Han Yang Hong-Bo Sun 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期56-62,共7页
Although femtosecond laser microfabrication is one of the most promising three-dimensional(3D) fabrication techniques, it could suffer from low fabrication efficiency for structures with high 3D complexities. By usi... Although femtosecond laser microfabrication is one of the most promising three-dimensional(3D) fabrication techniques, it could suffer from low fabrication efficiency for structures with high 3D complexities. By using etching as a main assistant technique, the processing can be speeded up and an improved structure surface quality can be provided. However,the assistance of a single technique cannot satisfy the increasing demands of fabrication and integration of highly functional 3D microstructures. Therefore, a multi-technique-based 3D microfabrication method is required. In this paper, we briefly review the recent development on etching-assisted femtosecond laser microfabrication(EAFLM). Various processing approaches have been proposed to further strengthen the flexibilities of the EAFLM. With the use of the multi-technique-based microfabrication method, 3D microstructure arrays can be rapidly defined on planar or curved surfaces with high structure qualities. 展开更多
关键词 femtosecond laser microfabrication microlens array ETCHING
下载PDF
Microfabrication of Bubbular Cavities in PDMS for Cell Sorting and Microcell Culture Applications 被引量:1
4
作者 Ut-Binh T. Giang Michael R. King Lisa A. DeLouise 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第4期308-316,共9页
We describe a novel technique, low surface energy Gas Expansion Molding (GEM), to fabricate microbubble arrays in polydimethylsiloxane (PDMS) which are incorporated into parallel plate flow chambers and tested in ... We describe a novel technique, low surface energy Gas Expansion Molding (GEM), to fabricate microbubble arrays in polydimethylsiloxane (PDMS) which are incorporated into parallel plate flow chambers and tested in cell sorting and microcell cuTture applications. This architecture confers several operational advantages that distinguish this technology approach from currently used methods. Herein we describe the GEM process and the parameters that are used to control microbubble formation and a Vacuum-Assisted Coating (VAC) process developed to selectively and spatially alter the PDMS surface chemistry in the wells and on the microchannel surface. We describe results from microflow image visualization studies conducted to investigate fluid streams above and within microbubble wells and conclude with a discussion of cell culture studies in PDMS. 展开更多
关键词 POLYDIMETHYLSILOXANE microfabrication cell culture cell sorting MOLDING
下载PDF
In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting 被引量:19
5
作者 Dong Wu Jian Xu +3 位作者 Li-Gang Niu Si-Zhu Wu Katsumi Midorikawa Koji Sugioka 《Light(Science & Applications)》 SCIE EI CAS CSCD 2015年第1期569-576,共8页
The high-precision integration of three-dimensional(3D)microoptical components into microfluidics in a customizable manner is crucial for optical sensing,fluorescence analysis,and cell detection in optofluidic applica... The high-precision integration of three-dimensional(3D)microoptical components into microfluidics in a customizable manner is crucial for optical sensing,fluorescence analysis,and cell detection in optofluidic applications;however,it remains challenging for current microfabrication technologies.This paper reports the in-channel integration of flexible two-dimensional(2D)and 3D polymer microoptical devices into glass microfluidics by developing a novel technique:flat scaffold-supported hybrid femtosecond laser microfabrication(FSS-HFLM).The scaffold with an optimal thickness of 1–5 μm is fabricated on the lower internal surface of a microfluidic channel to improve the integration of high-precision microoptical devices on the scaffold by eliminating any undulated internal channel surface caused by wet etching.As a proof of demonstration,two types of typical microoptical devices,namely,2D Fresnel zone plates(FZPs)and 3D refractive microlens arrays(MLAs),are integrated.These devices exhibit multicolor focal spots,elongated(>three times)focal length and imaging of the characters‘RIKEN’in a liquid channel.The resulting optofluidic chips are further used for coupling-free white-light cell counting with a success rate as high as 93%.An optofluidic system with two MLAs and a W-filter is also designed and fabricated for more advanced cell filtering/counting applications. 展开更多
关键词 cell counting 3D optofluidic chips hybrid femtosecond laser microfabrication microlens arrays two-photon polymerization
原文传递
Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication 被引量:1
6
作者 Jian Xu Hiroyuki Kawano +5 位作者 Weiwei Liu Yasutaka Hanada Peixiang Lu Atsushi Miyawaki Katsumi Midorikawa Koji Sugioka 《Microsystems & Nanoengineering》 EI CSCD 2017年第1期396-404,共9页
This paper presents a simple technique to fabricate new electrofluidic devices for the three-dimensional(3D)manipulation of microorganisms by hybrid subtractive and additive femtosecond(fs)laser microfabrication(fs la... This paper presents a simple technique to fabricate new electrofluidic devices for the three-dimensional(3D)manipulation of microorganisms by hybrid subtractive and additive femtosecond(fs)laser microfabrication(fs laser-assisted wet etching of glass followed by water-assisted fs laser modification combined with electroless metal plating).The technique enables the formation of patterned metal electrodes in arbitrary regions in closed glass microfluidic channels,which can spatially and temporally control the direction of electric fields in 3D microfluidic environments.The fabricated electrofluidic devices were applied to nanoaquariums to demonstrate the 3D electro-orientation of Euglena gracilis(an elongated unicellular microorganism)in microfluidics with high controllability and reliability.In particular,swimming Euglena cells can be oriented along the z-direction(perpendicular to the device surface)using electrodes with square outlines formed at the top and bottom of the channel,which is quite useful for observing the motions of cells parallel to their swimming directions.Specifically,z-directional electric field control ensured efficient observation of manipulated cells on the front side(45 cells were captured in a minute in an imaging area of~160×120μm),resulting in a reduction of the average time required to capture the images of five Euglena cells swimming continuously along the z-direction by a factor of~43 compared with the case of no electric field.In addition,the combination of the electrofluidic devices and dynamic imaging enabled observation of the flagella of Euglena cells,revealing that the swimming direction of each Euglena cell under the electric field application was determined by the initial body angle. 展开更多
关键词 dynamic imaging electrofluidic devices electro-orientation femtosecond laser microfabrication flagellar motions selective metallization 3D electric fields 3D microfluidics
原文传递
Etching of quartz crystals in liquid phase environment:A review
7
作者 Yide Dong Yike Zhou +5 位作者 Haizhou Huang Bosong Zhang Xihan Li Kaiwen Chen Litao Sun Guangbin Dou 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期87-109,共23页
Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency... Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices. 展开更多
关键词 Quartz crystal Materials processing Wet etching microfabrication Quartz MEMS
下载PDF
Leveraging electrochemical sensors to improve efficiency of cancer detection
8
作者 Li Fu Hassan Karimi-Maleh 《World Journal of Clinical Oncology》 2024年第3期360-366,共7页
Electrochemical biosensors have emerged as a promising technology for cancer detection due to their high sensitivity,rapid response,low cost,and capability for non-invasive detection.Recent advances in nanomaterials l... Electrochemical biosensors have emerged as a promising technology for cancer detection due to their high sensitivity,rapid response,low cost,and capability for non-invasive detection.Recent advances in nanomaterials like nanoparticles,graphene,and nanowires have enhanced sensor performance to allow for cancer biomarker detection,like circulating tumor cells,nucleic acids,proteins and metabolites,at ultra-low concentrations.However,several challenges need to be addressed before electrochemical biosensors can be clinically implemented.These include improving sensor selectivity in complex biological media,device miniaturization for implantable applications,integration with data analytics,handling biomarker variability,and navigating regulatory approval.This editorial critically examines the prospects of electrochemical biosensors for efficient,low-cost and minimally invasive cancer screening.We discuss recent developments in nanotechnology,microfabrication,electronics integration,multiplexing,and machine learning that can help realize the potential of these sensors.However,significant interdisciplinary efforts among researchers,clinicians,regulators and the healthcare industry are still needed to tackle limitations in selectivity,size constraints,data interpretation,biomarker validation,toxicity and commercial translation.With committed resources and pragmatic strategies,electrochemical biosensors could enable routine early cancer detection and dramatically reduce the global cancer burden. 展开更多
关键词 Electrochemical sensors Cancer biomarkers NANOMATERIALS Point-of-care diagnostics microfabrication Machine learning
下载PDF
基于创新性内侧壁成型工艺的多光学通道微型碱金属原子气室
9
作者 Mingzhi Yu Yao Chen +10 位作者 Yongliang Wang Xiangguang Han Guoxi Luo Libo Zhao Yanbin Wang Yintao Ma Shun Lu Ping Yang Qijing Lin Kaifei Wang Zhuangde Jiang 《Engineering》 SCIE EI CAS CSCD 2024年第4期46-55,共10页
Existing microfabricated atomic vapor cells have only one optical channel,which is insufficient for supporting the multiple orthogonal beams required by atomic devices.In this study,we present a novel wafer-level manu... Existing microfabricated atomic vapor cells have only one optical channel,which is insufficient for supporting the multiple orthogonal beams required by atomic devices.In this study,we present a novel wafer-level manufacturing process for fabricating multi-optical-channel atomic vapor cells and an innovative method for batch processing the inner sidewalls of millimeter glass holes to meet optical channel requirements.Surface characterization and transmittance tests demonstrate that the processed inner sidewalls satisfy the criteria for an optical channel.In addition,the construction of an integrated processing platform enables multilayer non-isothermal anode bonding,the filling of inert gases,and the recovery and recycling of noble gases.Measurements of the absorption spectra and free-induction decay signals of xenon-129(^(129)Xe)and xenon-131(^(131)Xe)under different pump-probe schemes demonstrate the suitability of our vapor cell for use in atomic devices including atomic gyroscopes,dual-beam atomic magnetometers,and other optical/atomic devices.The proposed micromolding technology has broad application prospects in the field of optical-device processing. 展开更多
关键词 Microfabricated atomic vapor cells Inner-sidewall molding Multiple optical channels Quantum sensing
下载PDF
A New Method for Fabrication of SU8 Structures with a High Aspect Ratio Using a Mask-Back Exposure Technique
10
作者 伊福廷 缪鹏 +2 位作者 彭良强 张菊芳 韩勇 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第1期26-29,共4页
A new method is presented,which can obtain high aspect ratio in SU8 structures.Instead that the top of the photo resist layers are exposed to UV light through masks in conventional lithography,the new method utilizes ... A new method is presented,which can obtain high aspect ratio in SU8 structures.Instead that the top of the photo resist layers are exposed to UV light through masks in conventional lithography,the new method utilizes a mask-back exposure technique,i.e.the SU8 resist layer coated on a mask surface (metal patterns on a glass plate),is irradiated by UV light through the back of the mask.So a desired exposure dose on the bottom of the resist layer can be easily achieved without over-exposing from its top.This has a two-fold effect,i.e.proper dose on the bottom of the resist and less internal stress.Initial experimental results show that compared to an aspect ratio of 18 obtained by conventional method,a higher aspect ratio of 32 in the SU8 structures can be achieved by this new method. 展开更多
关键词 MEMS SU8 resist microfabrication back-exposure.
下载PDF
Development of Micro Selective Laser Melting:The State of the Art and Future Perspectives 被引量:16
11
作者 Balasubramanian Nagarajan Zhiheng Hu +2 位作者 Xu Song Wei Zhai Jun Wei 《Engineering》 SCIE EI 2019年第4期702-720,共19页
Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique t... Additive manufacturing(AM)is gaining traction in the manufacturing industry for the fabrication of components with complex geometries using a variety of materials.Selective laser melting(SLM)is a common AM technique that is based on powder-bed fusion(PBF)to process metals;however,it is currently focused only on the fabrication of macroscale and mesoscale components.This paper reviews the state of the art of the SLM of metallic materials at the microscale level.In comparison with the direct writing techniques that are commonly used for micro AM,micro SLM is attractive due to a number of factors,including a faster cycle time,process simplicity,and material versatility.A comprehensive evaluation of various research works and commercial systems for the fabrication of microscale parts using SLM and selective laser sintering(SLS)is conducted.In addition to identifying existing issues with SLM at the microscale,which include powder recoating,laser optics,and powder particle size,this paper details potential future directions.A detailed review of existing recoating methods in powder-bed techniques is conducted,along with a description of emerging efforts to implement dry powder dispensing methods in the AM domain.A number of secondary finishing techniques for AM components are reviewed,with a focus on implementation for microscale features and integration with micro SLM systems. 展开更多
关键词 ADDITIVE manufacturing SELECTIVE laser MELTING microfabrication Hybrid processing Powder-bed RECOATING
下载PDF
Recent developments of stamped planar micro-supercapacitors: Materials,fabrication and perspectives 被引量:4
12
作者 Fei Li Yang Li +4 位作者 Jiang Qu Jinhui Wang Vineeth Kumar Bandari Feng Zhu Oliver G.Schmidt 《Nano Materials Science》 CAS CSCD 2021年第2期154-169,共16页
The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components.Stamping micro-supercapacitors(MSCs)with planar interdigital configurati... The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components.Stamping micro-supercapacitors(MSCs)with planar interdigital configurations are considered as a promising candidate to meet the requirements.In this review,recent progress of the different stamping materials and various stamping technologies are first discussed.The merits of each material,manufacturing process of each stamping method and the properties of stamping MSCs are scrutinized,respectively.Further insights on technical difficulties and scientific challenges are finally demonstrated,including the limited thickness of printed electrodes,poor overlay accuracy and printing resolution. 展开更多
关键词 Microsupercapacitors STAMPING microfabrication Miniaturized electronics Energy storage devices
下载PDF
Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering 被引量:2
13
作者 Tania Limongi Luca Tirinato +5 位作者 Francesca Pagliari Andrea Giugni Marco Allione Gerardo Perozziello Patrizio Candeloro Enzo Di Fabrizio 《Nano-Micro Letters》 SCIE EI CAS 2017年第1期1-13,共13页
Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of1–100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing ... Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of1–100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity,crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell–matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques.In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration. 展开更多
关键词 NANOMATERIALS NANOSTRUCTURES microfabrication Nanofabrication DEVICE Tissue engineering
下载PDF
Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects 被引量:2
14
作者 Tarun Agarwal Valentina Onesto +5 位作者 Lallepak Lamboni Aafreen Ansari Tapas K.Maiti Pooyan Makvandi Massoud Vosough Guang Yang 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第3期568-595,共28页
Conventional 2D intestinal models cannot precisely recapitulate biomimetic features in vitro and thus are unsuitable for various pharmacokinetic applications,development of disease models,and understanding the host-mi... Conventional 2D intestinal models cannot precisely recapitulate biomimetic features in vitro and thus are unsuitable for various pharmacokinetic applications,development of disease models,and understanding the host-microbiome interactions.Thus,recently,efforts have been directed toward recreating in vitro models with intestine-associated unique 3D crypt-villus(for small intestine)or crypt-lumen(for large intestine)architectures.This review comprehensively delineates the current advancements in this research area in terms of the different microfabrication technologies(photolithography,laser ablation,and 3D bioprinting)employed and the physiological relevance of the obtained models in mimicking the features of native intestinal tissue.A major thrust of the manuscript is also on highlighting the dynamic interplay between intestinal cells(both the stem cells and differentiated ones)and different biophysical,biochemical,and mechanobiological cues along with interaction with other cell types and intestinal microbiome,providing goals for the future developments in this sphere.The article also manifests an outlook toward the application of induced pluripotent stem cells in the context of intestinal tissue models.On a concluding note,challenges and prospects for clinical translation of 3D patterned intestinal tissue models have been discussed. 展开更多
关键词 Intestine tissue models microfabrication Biophysicochemical and biomechanical cues COCULTURE Induced pluripotent stem cells
下载PDF
Enhanced ablation efficiency for silicon by femtosecond laser microprocessing with GHz bursts in MHz bursts(BiBurst) 被引量:2
15
作者 Francesc Caballero-Lucas Kotaro Obata Koji Sugioka 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第1期75-83,共9页
Ultrashort laser pulses confine material processing to the laser-irradiated area by suppressing heat diffusion,resulting in precise ablation in diverse materials.However,challenges occur when high speed material remov... Ultrashort laser pulses confine material processing to the laser-irradiated area by suppressing heat diffusion,resulting in precise ablation in diverse materials.However,challenges occur when high speed material removal and higher ablation efficiencies are required.Ultrafast burst mode laser ablation has been proposed as a successful method to overcome these limitations.Following this approach,we studied the influence of combining GHz bursts in MHz bursts,known as Bi Burst mode,on ablation efficiency of silicon.Bi Burst mode used in this study consists of multiple bursts happening at a repetition rate of 64 MHz,each of which contains multiple pulses with a repetition rate of 5 GHz.The obtained results show differences between Bi Burst mode and conventional single pulse mode laser ablation,with a remarkable increase in ablation efficiency for the Bi Burst mode,which under optimal conditions can ablate a volume4.5 times larger than the single pulse mode ablation while delivering the same total energy in the process. 展开更多
关键词 BiBurst mode GHz burst laser ablation surface microfabrication
下载PDF
Designer substrates and devices for mechanobiology study 被引量:1
16
作者 Wang Xi Delphine Delacour Benoit Ladoux 《Journal of Semiconductors》 EI CAS CSCD 2020年第4期81-88,共8页
Both biological and engineering approaches have contributed significantly to the recent advance in the field of mechanobiology.Collaborating with biologists,bio-engineers and materials scientists have employed the tec... Both biological and engineering approaches have contributed significantly to the recent advance in the field of mechanobiology.Collaborating with biologists,bio-engineers and materials scientists have employed the techniques stemming from the conventional semiconductor industry to rebuild cellular milieus that mimic critical aspects of in vivo conditions and elicit cell/tissue responses in vitro.Such reductionist approaches have help to unveil important mechanosensing mechanism in both cellular and tissue level,including stem cell differentiation and proliferation,tissue expansion,wound healing,and cancer metastasis.In this mini-review,we discuss various microfabrication methods that have been applied to generate specific properties and functions of designer substrates/devices,which disclose cell-microenvironment interactions and the underlying biological mechanisms.In brief,we emphasize on the studies of cell/tissue mechanical responses to substrate adhesiveness,stiffness,topography,and shear flow.Moreover,we comment on the new concepts of measurement and paradigms for investigations of biological mechanotransductions that are yet to emerge due to on-going interdisciplinary efforts in the fields of mechanobiology and microengineering. 展开更多
关键词 DESIGNER SUBSTRATES and DEVICES microfabrication MECHANOBIOLOGY microengineering tissue mechanics MICROFLUIDICS
下载PDF
Experimental Characterization of ALD Grown Al<SUB>2</SUB>O<SUB>3</SUB>Film for Microelectronic Applications 被引量:1
17
作者 Yuxi Wang Yida Chen +6 位作者 Yong Zhang Zhaoxin Zhu Tao Wu Xufeng Kou Pingping Ding Romain Corcolle Jangyong Kim 《Advances in Materials Physics and Chemistry》 2021年第1期7-19,共13页
<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In... <span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In this paper, 50 nm thick Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> thin films have been prepared by atomic layer deposition technique on indium tin oxide (ITO) pre-coated glass substrates and titanium nitride (TiN) coated Si substrates with typical MIM capacitor structure. Photolithography and metal lift-off technique were used for processing of the MIM capacitors. Semiconductor Analyzer with probe station was used to perform capacitance-voltage (C-V) characterization with low-medium frequency range. Current-voltage (I-V) characteristics of MIM capacitors were measured on precision source/measurement system. The performance of Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> films of MIM capacitors on glass was examined in the voltage range from <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span></span></span>5 to 5 V with a frequency range from 10 kHz to 5 MHz. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/ITO/Glass MIM capacitors demonstrate a capacitance density of 1.6 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;">at 100 kHz, a loss tangent ~0.005 at 100 kHz and a leakage current of 1.79 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span></span></span>8</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/TiN/Si MIM capacitors demonstrate a capacitance density of 1.5 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 100 kHz, a loss tangent ~0.007 at 100 kHz and a lower leakage current of 2.93 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">&#8722;</span></span></span></span>10</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. The obtained electrical properties could indicate a promising application of MIM Capacitors.</span> 展开更多
关键词 Dielectrics High-k Thin Film Capacitors Atomic Layer Deposition microfabrication
下载PDF
Two-Photon Absorption and Excited State Dynamics of Two Organic Molecules Containing Donor/Acceptor Moieties
18
作者 闫永丽 李波 +4 位作者 刘康俊 董志伟 马国宏 王筱梅 钱士雄 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第7期2456-2459,共4页
Two new two-photon absorption (TPA) molecules, named SK-G1 and NT-G1, are synthesized and the photo- physical characteristics are investigated by using linear absorption spectra, one-photon fluorescence spectra and ... Two new two-photon absorption (TPA) molecules, named SK-G1 and NT-G1, are synthesized and the photo- physical characteristics are investigated by using linear absorption spectra, one-photon fluorescence spectra and two-photon excited fluorescence spectra. Both the compounds exhibit TPA properties, and the TPA values determined by z-scan measurement are 10 GM and 39 GM for SK-G1 and NT-G1, respectively, at wavelength 80Ohm. Time-resolved spectroscopic techniques are employed to further explore the excited state dynamics of NT-G l with larger TPA cross section. The research results show that there is an ultrafast intraband energy transfer process (about 3ps) before the formation of charge transfer state with a relatively long lifetime. 展开更多
关键词 NONLINEAR-OPTICAL PROPERTIES ULTRAFAST DYNAMICS CROSS-SECTIONS LIMITING PROPERTIES DATA-STORAGE CHROMOPHORES microfabrication TRIPHENYLAMINE FLUORESCENCE CORE
下载PDF
Research and Application of MEMS Technique at BSRF
19
作者 YI Fu ting, PENG Liang qiang, ZHANG Ju fang, HAN Yong, XIAN Ding chang (Institute of High Energy Physics) 《光学精密工程》 EI CAS CSCD 2001年第5期430-434,共5页
LIGA technique has been developed since 1993 at BSRF, including the fabrication of LIGA mask, deep X ray lithography, electroplating, the pouring molding and the applications in some fields. The LIGA mask with gold ab... LIGA technique has been developed since 1993 at BSRF, including the fabrication of LIGA mask, deep X ray lithography, electroplating, the pouring molding and the applications in some fields. The LIGA mask with gold absorbing structures of 20μm thickness and 5μm width and Kapton membrane of around 5μm thickness has been successfully fabricated and applied to the deep X ray lithography with the PMMA structure of 1mm thickness or above. The beamline from a wiggler is used for the deep X ray lithography of LIGA station and is open to other institutes researching the deep X ray lithography. The normal process of LIGA technique with the exception of molding has been established with the PMMA structures of 500μm thickness at BSRF. The largest aspect ratio of PMMA structures can reach about 50 with the height of 500μm and the lateral size of 10μm. The nickel and copper structures with the thickness of 0.5mm and 1mm have been made by using the electroplating technique. The SU8 as a resist material of deep etch lithography with UV light is also developed in the fabrication of LIGA mask and some devices at BSRF.Electromagnetic stepping micro motor, heat exchange, accelerator, structures used in the EDM (electro discharge machining) are being developed for the future applications. 展开更多
关键词 LIGA MEMS microfabrication microsystems
下载PDF
Design,fabrication,and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
20
作者 Hong-Jun Zhang Ji Wen +5 位作者 Zhao-Hong Mo Hong-Rui Liu Xiao-Dong Wang Zhong-Hua Xiong Jin-Wen Zhang Mao-Bing Shuai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期551-557,共7页
For photon detection, superconducting transition-edge sensor(TES) micro-calorimeters are excellent energy-resolving devices. In this study, we report our recent work in developing Ti-/Au-based TES. The Ti/Au TES devic... For photon detection, superconducting transition-edge sensor(TES) micro-calorimeters are excellent energy-resolving devices. In this study, we report our recent work in developing Ti-/Au-based TES. The Ti/Au TES devices were designed and implemented with a thickness ratio of 1:1 and different suspended structures using micromachining technology. The characteristics were evaluated and analyzed, including surface morphology, 3 D deformation of suspended Ti/Au TES device structure, I–V characteristics, and low-temperature superconductivity. The results showed that the surface of Ti/Au has good homogeneity and the surface roughness of Ti/Au is significantly increased compared with the substrate. The structure of Ti/Au bilayer film significantly affects the deformation of suspended devices, but the deformation does not affect the I–V characteristics of the devices. For devices with the Ti/Au bilayer(150 μm × 150 μm) and beams(100 μm × 25 μm), the transition temperature(T;) is 253 m K with a width of 6 m K, and the value of the temperature sensitivity α is 95.1. 展开更多
关键词 transition-edge sensor Ti/Au superconductivity film microfabrication deformation of suspended structure
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部