期刊文献+
共找到131,563篇文章
< 1 2 250 >
每页显示 20 50 100
Ultrafast photoemission electron microscopy:A multidimensional probe of nonequilibrium physics
1
作者 戴亚南 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期24-57,共34页
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact... Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics. 展开更多
关键词 ultrafast photoemission electron microscopy ultrafast momentum microscopy excited state physics
下载PDF
Capturing the non-equilibrium state in light–matter–free-electron interactions through ultrafast transmission electron microscopy
2
作者 汪文韬 孙帅帅 +5 位作者 李俊 郑丁国 黄思远 田焕芳 杨槐馨 李建奇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期88-101,共14页
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact... Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams. 展开更多
关键词 ultrafast transmission electron microscopy non-equilibrium structural dynamics photo-induced phase transition free-electron–photon interactions
下载PDF
Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors 被引量:1
3
作者 Xiaomei Wu Xiaoxing Ke Manling Sui 《Journal of Semiconductors》 EI CAS CSCD 2022年第4期67-81,共15页
Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property rel... Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material. 展开更多
关键词 organic–inorganic hybrid perovskite solar cell materials energy materials scanning electron microscopy transmission electron microscopy irradiation damage
下载PDF
Unveiling localized electronic properties of ReS2 thin layers at nanoscale using Kelvin force probe microscopy combined with tip-enhanced Raman spectroscopy
4
作者 罗宇 苏伟涛 +4 位作者 张娟娟 陈飞 武可 曾宜杰 卢红伟 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期598-603,共6页
Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hund... Electronic properties of two-dimensional(2D) materials can be strongly modulated by localized strain. The typical spatial resolution of conventional Kelvin probe force microscopy(KPFM) is usually limited in a few hundreds of nanometers, and it is difficult to characterize localized electronic properties of 2D materials at nanoscales. Herein, tip-enhanced Raman spectroscopy(TERS) is proposed to combine with KPFM to break this restriction. TERS scan is conducted on ReS2bubbles deposited on a rough Au thin film to obtain strain distribution by using the Raman peak shift. The localized contact potential difference(CPD) is inversely calculated with a higher spatial resolution by using strain measured by TERS and CPD-strain working curve obtained using conventional KPFM and atomic force microscopy. This method enhances the spatial resolution of CPD measurements and can be potentially used to characterize localized electronic properties of 2D materials. 展开更多
关键词 few layer ReS2 tip enhanced Raman spectroscopy local strain Kelvin probe force microscopy
下载PDF
Application of electron microscopy in gastroenterology
5
作者 Masaya Iwamuro Haruo Urata +1 位作者 Takehiro Tanaka Hiroyuki Okada 《World Journal of Gastrointestinal Pathophysiology》 2022年第2期41-49,共9页
Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also be... Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also been performed in the field of gastroenterology.Electron microscopy and EDX enable(1)Observation of ultrastructural differences in esophageal epithelial cells in patients with gastroesophageal reflux and eosinophilic esophagitis;(2)Detection of lanthanum deposition in the stomach and duodenum;(3)Ultrastructural and elemental analyses of enteroliths and bezoars;(4)Detection and characterization of microorganisms in the gastrointestinal tract;(5)Diagnosis of gastrointestinal tumors with neuroendocrine differentiation;and(6)Analysis of gold nanoparticles potentially used in endoscopic photodynamic therapy.This review aims to foster a better understanding of electron microscopy applications by reviewing relevant clinical studies,basic research findings,and the state of current research carried out in gastroenterology science. 展开更多
关键词 Transmission electron microscopy Scanning electron microscopy Energydispersive X-ray spectrometry Gastrointestinal disease gastroesophageal reflux disease PATHOGENS
下载PDF
Transmission Electron Microscopy as a Powerful Tool for Investigating Lithium-ion Battery Materials 被引量:1
6
作者 LIN Cong LI Jian-Yuan +1 位作者 WANG Chong-Min PAN Feng 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第12期2015-2019,共5页
Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigati... Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigating the lithium-ion battery(LIB) materials. The present perspective paper focuses on several LIB related aspects that are recently revealed by using TEM. Finally, we present outlook on the future directions of TEM for LIB research and development. 展开更多
关键词 transmission electron microscopy lithium-ion batteries STRUCTURES PROPERTIES
下载PDF
Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries 被引量:1
7
作者 仝毓昕 张庆华 谷林 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期23-34,共12页
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. Hig... Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed. 展开更多
关键词 scanning transmission electron microscopy high angle annular dark field annular bright field lithium-ion batteries
下载PDF
A review of in situ transmission electron microscopy study on the switching mechanism and packaging reliability in non-volatile memory 被引量:1
8
作者 Xin Yang Chen Luo +7 位作者 Xiyue Tian Fang Liang Yin Xia Xinqian Chen Chaolun Wang Steve Xin Liang Xing Wu Junhao Chu 《Journal of Semiconductors》 EI CAS CSCD 2021年第1期62-76,共15页
Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research i... Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research interest.The switching process in NVM devices accompanied by the evolution of microstructure and composition is fast and subtle.Transmission electron microscopy(TEM)with high spatial resolution and versatile external fields is widely used in analyzing the evolution of morphology,structures and chemical compositions at atomic scale.The various external stimuli,such as thermal,electrical,mechanical,optical and magnetic fields,provide a platform to probe and engineer NVM devices inside TEM in real-time.Such advanced technologies make it possible for an in situ and interactive manipulation of NVM devices without sacrificing the resolution.This technology facilitates the exploration of the intrinsic structure-switching mechanism of NVMs and the reliability issues in the memory package.In this review,the evolution of the functional layers in NVM devices characterized by the advanced in situ TEM technology is introduced,with intermetallic compounds forming and degradation process investigated.The principles and challenges of TEM technology on NVM device study are also discussed. 展开更多
关键词 MEMORY transmission electron microscopy in situ characterization PACKAGE RELIABILITY
下载PDF
Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy
9
作者 秦将 郎鹏 +5 位作者 季博宇 N.K.Alemayehu 陶海岩 高勋 郝作强 林景全 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期82-86,共5页
We report direct nanoscale imaging of ultrafast plasmon in a gold dolmen nanostructure excited with the 7fs laser pulses by combining the interferometric time-resolved technology with the three-photon photoemission el... We report direct nanoscale imaging of ultrafast plasmon in a gold dolmen nanostructure excited with the 7fs laser pulses by combining the interferometric time-resolved technology with the three-photon photoemission electron microscopy(PEEM).The interferometric time-resolved traces show that the plasmon mode beating pattern appears at the ends of the dimer slabs in the dolmen nanostructure as a result of coherent superposition of multiple localized surface plasmon modes induced by broad bandwidth of the ultrafast laser pulses.The PEEM measurement further discloses that in-phase of the oscillation field of two neighbor defects are surprisingly observed,which is attributed to the plasmon coupling between them.Furthermore,the control of the temporal delay between the pump and probe laser pluses could be utilized for manipulation of the near-field distribution.These findings deepen our understanding of ultrafast plasmon dynamics in a complex nanosystem. 展开更多
关键词 of on as in Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission electron microscopy that ITR
下载PDF
Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy
10
作者 徐丽君 翟鹏飞 +6 位作者 张胜霞 曾健 胡培培 李宗臻 刘丽 孙友梅 刘杰 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期401-405,共5页
The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy.... The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching. 展开更多
关键词 ion track MOS2 transmission electron microscopy(TEM) RECRYSTALLIZATION
下载PDF
Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
11
作者 付春来 赵振龙 +3 位作者 季博宇 宋晓伟 郎鹏 林景全 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期493-499,共7页
Clear imaging of surface plasmon polaritons(SPPs)is a prerequisite for SPPs-based applications.In this work,we demonstrate an improvement of near-field imaging of SPPs via directly comparing the visibility of the phot... Clear imaging of surface plasmon polaritons(SPPs)is a prerequisite for SPPs-based applications.In this work,we demonstrate an improvement of near-field imaging of SPPs via directly comparing the visibility of the photoemission electron microscopy(PEEM)image of SPPs under one-and two-color laser excitation(also known as one-or two-color laser PEEM).By measuring the photoelectron yield and the contrast of the interference fringes of SPPs,we demonstrate that in addition to enhancing the photoemission yield,two-color laser PEEM can significantly improve the contrast between bright and dark fringes(nearly 4 times higher than that of one-color laser case).By recording the nonlinear order of the photoelectrons ejected from the bright and dark fringes,respectively,the underlying mechanism for the improved visibility is revealed.In addition,the influences of the polarization direction of 400-nm laser on the PEEM images of the SPPs with different wave vector directions are shown.These results can provide technical support for the development of SPPs-based communication devices and catalysis. 展开更多
关键词 surface plasmon polaritons photoemission electron microscopy near-field imaging
下载PDF
Nucleation and Growth of Thallium on Thin Film Mercury Electrode: Voltammetric, Scanning Electron Microscopy, Chronoamperometric and Electrochemical Impedance Studies
12
作者 Abdoulkadri Ayouba Mahamane Boubié Guel Paul-Louis Fabre 《American Journal of Analytical Chemistry》 CAS 2022年第11期415-430,共16页
Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposit... Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposition of Hg on glassy carbon electrode and Tl on Hg film by cyclic voltammetry, scanning electron microscopy, chronoamperometry and impedance techniques. The results showed a germination and growth of a 3D Hg phase on glassy carbon electrode. Similarly, the electrodeposition of Tl on Hg follows a 3D three-dimensional nucleation with diffusion controlled growth. The impedance measurements reveal an easier charge transfer on the Tl film. 展开更多
关键词 THALLIUM Mercury Film Cyclic Voltammetry Scanning electron microscopy Impedance Measurements
下载PDF
Scanning Electron Microscopy (SEM) of the Bug Eye and Sand Coral
13
作者 Sayid Ali Sayid Aliyu Dadan-Garba +1 位作者 Daniel Elaigwu Enenche Barnabas Achakpa Ikyo 《Microscopy Research》 2020年第1期1-7,共7页
We present a Scanning Electron Microscopy (SEM) technique for the characterisation of biological and non-biological samples at nano-scale level. Scanning Electron Microscopy has been around for a long while especially... We present a Scanning Electron Microscopy (SEM) technique for the characterisation of biological and non-biological samples at nano-scale level. Scanning Electron Microscopy has been around for a long while especially in material science laboratories in developed countries. The SEM has enabled scientist to have a better understanding of microstructure by providing unsurpassed optical magnifications of samples. In this introductory paper, we introduce the techniques of using SEM to capture highly magnified microstructure of a fly found on an African soybean (Glycine max) seed. We are able to estimate the number of lenses in each eye and zoom into features that could describe its life characteristics. Hexagonal lenses are estimated to have sizes ranging from 14 um to 19 um. This paper also presents a finding of a sea coral “pie like structure” on a single grain of sand used for water filtration. 展开更多
关键词 Bug Eye Sand Coral Scanning electron microscopy
下载PDF
Visualization of atomic scale reaction dynamics of supported nanocatalysts during oxidation and ammonia synthesis using in-situ environmental(scanning) transmission electron microscopy
14
作者 Michael R.Ward Robert W.Mitchell +1 位作者 Edward D.Boyes Pratibha L.Gai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期281-290,I0007,共11页
Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as... Reaction dynamics in gases at operating temperatures at the atomic level are the basis of heterogeneous gas-solid catalyst reactions and are crucial to the catalyst function.Supported noble metal nanocatalysts such as platinum are of interest in fuel cells and as diesel oxidation catalysts for pollution control,and practical ruthenium nanocatalysts are explored for ammonia synthesis.Graphite and graphitic carbons are of interest as supports for the nanocatalysts.Despite considerable literature on the catalytic processes on graphite and graphitic supports,reaction dynamics of the nanocatalysts on the supports in different reactive gas environments and operating temperatures at the single atom level are not well understood.Here we present real time in-situ observations and analyses of reaction dynamics of Pt in oxidation,and practical Ru nanocatalysts in ammonia synthesis,on graphite and related supports under controlled reaction environments using a novel in-situ environmental(scanning) transmission electron microscope with single atom resolution.By recording snapshots of the reaction dynamics,the behaviour of the catalysts is imaged.The images reveal single metal atoms,clusters of a few atoms on the graphitic supports and the support function.These all play key roles in the mobility,sintering and growth of the catalysts.The experimental findings provide new structural insights into atomic scale reaction dynamics,morphology and stability of the nanocatalysts. 展开更多
关键词 In-situ visualization Atomic scale reaction dynamics In-situ environmental scanning transmission electron microscopy with single atom resolution Supported nanoparticles Ammonia synthesis Oxidation reactions
下载PDF
High Resolution Electron Microscopy Observations of Structural Changes in Iron Nitride Films Annealed in Vacuum
15
作者 Shengkai GONG Huibin XU (Dept. of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第2期123-126,共4页
Iron-nitride films were prepared by reactive sputtering, and the effect of annealing treatment on the structures was investigated by means of in-situ electron microscopy and high resolution electron microscopy (HREM).... Iron-nitride films were prepared by reactive sputtering, and the effect of annealing treatment on the structures was investigated by means of in-situ electron microscopy and high resolution electron microscopy (HREM). As-deposited films were observed to be a mixed structure of a few ultrafine ε-Fe2-3N particles existing in the amorphous matrix. lt was found that the structurerelaxation in the amorphous occurred at 473 K, and the ultrafine grains began to grow at the higher annealing temperatures. The transition of the amorphous to ε-Fe2-3N was almost completed at 673 K. It is considered that the formation of the ideal ε-Fe3N is originated from the ordering of the nitrogen atoms during the annealing in vacuum. On the other hand, γ’-phase (Fe4N) was seen to precipitation of ε-phase at 723 K. Two possible modes are proposed in the precipitation of γ’-phase, depending on the heating rate and crystallographic orientation relationships. i.e. [121]ε [001]γ, (210)ε(110)γ and [100]ε[110]γ, (001)ε(111)γ. In addition,α-Fe particles were observed to form from the γ’-phase at high temperatures. We assumed that these structural changes are due to the diffusion of nitrogen and iron atoms during the annealing,except for the case of the precipitation of the γ’-phase as depicted above. The results obtained in this work are in a good agreement with the assumption. 展开更多
关键词 FIGURE High Resolution electron microscopy Observations of Structural Changes in Iron Nitride Films Annealed in Vacuum
下载PDF
A transmission electron microscopy study of the diversity of Candida albicans cells induced by Euphorbia hirta L.leaf extract in vitro 被引量:3
16
作者 Abu Arra Basma Zakaria Zuraini Sreenivasan Sasidharan 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2011年第1期20-22,共3页
Objective:To determine the major changes in the microstructure of Candida albicans(C. albicans) after treatment with Euphorbia hirta(E.hirta) L.leaf extract.Methods:Transmission electron microscopy was used to study t... Objective:To determine the major changes in the microstructure of Candida albicans(C. albicans) after treatment with Euphorbia hirta(E.hirta) L.leaf extract.Methods:Transmission electron microscopy was used to study the ultrastructural changes caused by E.hirta extract on C. albicans cells al various exposure time.Results:It was found that the main abnormalities were the alterations in morphology,lysis and complete collapse of the yeast cells after 36 h of exposure to the extract.Whereas the control cultures showed a typical morphology of Candida with a uniform central density,typically structured nucleus,and a cytoplasm with several elements of endomembrane system and enveloped by a regular,intact cell wall.Conclusions:The significant antifungal activity shown by this methanol extract of E.hirta L.suggests its potential against infections caused by C.albicans.The extract may be developed as an anticandidal agent. 展开更多
关键词 CANDIDA ALBICANS EUPHORBIA hirta L. Transmission electron microscopy Anticandidal agent
下载PDF
50 years of scanning electron microscopy of bone——a comprehensive overview of the important discoveries made and insights gained into bone material properties in health,disease,and taphonomy 被引量:2
17
作者 Furqan A.Shah Krisztina Ruscsák Anders Palmquist 《Bone Research》 SCIE CAS CSCD 2019年第2期123-137,共15页
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instrument... Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone.It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view.Interactions between incident electrons and atoms on the sample surface generate backscattered electrons,secondary electrons,and various other signals including X-rays that relay compositional and topographical information.Through selective removal or preservation of specific tissue components (organic,inorganic,cellular,vascular),their individual contribution(s) to the overall functional competence can be elucidated.With few restrictions on sample geometry and a variety of applicable sample-processing routes,a given sample may be conveniently adapted for multiple analytical methods.While a conventional SEM operates at high vacuum conditions that demand clean,dry,and electrically conductive samples,non-conductive materials (e.g.,bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope.This review highlights important insights gained into bone microstructure and pathophysiology,bone response to implanted biomaterials,elemental analysis,SEM in paleoarchaeology,3D imaging using focused ion beam techniques,correlative microscopy and in situ experiments.The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum,the SEM lends itself to many unique and diverse applications,which attest to the versatility and user-friendly nature of this instrument for studying bone.Significant technological developments are anticipated for analysing bone using the SEM. 展开更多
关键词 SCANNING electron microscopy COMPREHENSIVE OVERVIEW important discoveries
下载PDF
High-resolution Transmission Electron Microscopy Characterization of the Structure of Cu Precipitate in a Thermal-aged Multicomponent Steel 被引量:1
18
作者 Lizhan Han Qingdong Liu Jianfeng Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第5期117-124,共8页
High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important t... High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important to understand the formation behaviors of the Cu precipitates.High-resolution transmission electron microscopy(TEM)is utilized to investigate the structure of Cu precipitates thermally formed in a high-strength low-alloy(HSLA)steel.The Cu precipitates were generally formed from solid solution and at the crystallographic defects such as martensite lath boundaries and dislocations.The Cu precipitates in the same aging condition have various structure of BCC,9 R and FCC,and the structural evolution does not greatly correlate with the actual sizes.The presence of different structures in an individual Cu precipitate is observed,which reflects the structural transformation occurring locally to relax the strain energy.The multiply additions in the steel possibly make the Cu precipitation more complex compared to the binary or the ternary Fe-Cu alloys with Ni or Mn additions.This research gives constructive suggestions on alloying design of Cu-bearing alloy steels. 展开更多
关键词 CU PRECIPITATE High-resolution transmission electron microscopy THERMAL aging HIGH-STRENGTH low-alloy STEEL
下载PDF
Fixation methods for electron microscopy of human and other liver 被引量:1
19
作者 Eddie Wisse Filip Braet +8 位作者 Hans Duimel Celien Vreuls Ger Koek Steven WM Olde Damink Maartje AJ van den Broek Bart De Geest Cees HC Dejong Chise Tateno Peter Frederik 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第23期2851-2866,共16页
For an electron microscopic study of the liver,expertise and complicated,time-consuming processing of hepatic tissues and cells is needed.The interpretation of electron microscopy(EM) images requires knowledge of the ... For an electron microscopic study of the liver,expertise and complicated,time-consuming processing of hepatic tissues and cells is needed.The interpretation of electron microscopy(EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation,embedding,sectioning,contrast staining and microscopic imaging.Hence,the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue,for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. 展开更多
关键词 LIVER Tissue fixation PERFUSION electron microscopy BIOPSY
下载PDF
Three-Dimensional Analysis of Melanosomes Isolated from B16 Melanoma Cells by Using Ultra High Voltage Electron Microscopy 被引量:1
20
作者 Shuuichi Akazaki Toshie Takahashi +7 位作者 Yujiro Nakano Tomoki Nishida Hirotarou Mori Akio Takaoka Hitomi Aoki Huayua Chen Takahiro Kunisada Kenzo Koike 《Microscopy Research》 2014年第1期1-8,共8页
Melanosomes, isolated by centrifugal separation from culture broth of B16 melanoma cells derived from mouse, were observed by scanning electron microscopy (SEM), and by transmission electron microscopy (TEM). Some int... Melanosomes, isolated by centrifugal separation from culture broth of B16 melanoma cells derived from mouse, were observed by scanning electron microscopy (SEM), and by transmission electron microscopy (TEM). Some interesting structural features were found inside and outside of the melanosomes. By SEM observation, the melanosomes were ellipsoid shape, their surface was not smooth and was covered with rough substructure, 10 to 20 nm particles. By TEM, uneven structure and micro particles were observed in the melanosomes. Furthermore, three-dimensional analysis was tried by using the ultra-high voltage electron microscopy(UHVEM). Micrographs of the melanosomes were taken at various tilted angles by UHVEM, after preparing 500 nm thickness specimens stained with lead citrate. From the micrographs collected, the three-dimensional structures were reconstructed by using i-mode software. Melanin stained by lead and non stained parts was clearly observed in the reconstructed structure. Non stained parts were round, regular size, and distributed widely in the melanosomes. 展开更多
关键词 B16 MELANOMA MELANOSOME Scanning electron microscopy Transmission electron microscopy Ultra High Voltage electron microscopy Three-Dimensional Structure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部