The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme...The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.展开更多
The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted huma...The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted human premolars(n560) were instrumented to an apical size #50/0.06 using ProF ile and treated as follows: Group 1(n510) was filled with phosphate buffered saline(PBS); Group 2(n510) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3(n520) was obturated orthograde with a paste of OrthoM TA(BioM TA, Seoul, Korea) and PBS; and Group 4(n520) was incubated with E. faecalis for 3 weeks and then obturated with OrthoM TA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material(IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoM TA-filled roots(Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots(Group 4). Therefore, the orthograde obturation of root canals with OrthoM TA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization.展开更多
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact...Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.展开更多
The local thermal conductivity of polycrystalline aluminum nitride (A1N) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based t...The local thermal conductivity of polycrystalline aluminum nitride (A1N) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the A1N sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3w method. A thermal conductivity of 308 W/m-K within grains corresponding to that of high-purity single crystal A1N is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy.展开更多
AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidi...AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidiode laser.METHODS:This prospective study included 30consecutive patients with nasolacrimal duct obstruction who underwent EXT-,EN-,or TC-DCR.Thirty removed lacrimal stent fragments and conjunctival samples were cultured.The lacrimal stent biofilms were examined by scanning electron microscopy(SEM).RESULTS:Eleven(36.7%)of the 30 lacrimal stent cultures were positive for aerobic bacteria(most commonly Staphylococcus epidermidis and Pseudomonas aeruginosa).However anaerobic bacteria and fungi were not identified in the lacrimal stent cultures.Twenty-seven(90%)patients had biofilmpositive lacrimal stents.The conjunctival culture positivity after the DCR,biofilm positivity on stents,the grade of biofilm colonization,and the presence of mucus and coccoid and rod-shaped organisms did not significantly differ between any of the groups(P】0.05).However,a significant difference was found when the SEM results were compared to the results of the lacrimal stent and conjunctival cultures(P【0.001).CONCLUSION:Type of dacryocystorhinostomy(DCR)surgery did not affect the biofilm colonization of the lacrimal stents.SEM also appears to be more precise than microbiological culture for evaluating the presence of biofilms on lacrimal stents.展开更多
Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie...Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.展开更多
We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembl...We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembled CoPc monolayer is fabricated on Au(111) substrate and resolved by ECSTM in 0.1 M KOH electrolyte.The OH^(-)adsorption on CoPc prior to OER is observed in ECSTM images.During OER,the generated O_(2) adsorbed on Co Pc is observed in the CoPc monolayer.Potential step experiment is employed to monitor the desorption of OER-generated O_(2) from CoPc,which results in the decreasing surface coverage of CoPc-O_(2) with time.The rate constant of O_(2) desorption is evaluated through data fitting.The insights into the dynamics of Co-O_(2) dissociation at the molecular level via in situ imaging help understand the role of Co-O_(2) in oxygen reduction reaction(ORR) and OER.展开更多
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact...Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.展开更多
A novel biological small-diameter vascular graft was evaluated in a canine model. 3 cm long segments with 4 mm I.D. were implanted end-to-end in the carotid position of 12 dogs for 6 months. Color Doppler sonography w...A novel biological small-diameter vascular graft was evaluated in a canine model. 3 cm long segments with 4 mm I.D. were implanted end-to-end in the carotid position of 12 dogs for 6 months. Color Doppler sonography was performed at the first week post-operation, and angiography was then administered to 9 grafts at 4th week, 12th week and 24th week respectively to monitor the graft pantency and blood flow characteristics. Vascular samples containing the grafts were collected at 1st week, 8th week, 12th week and 24th week after implantation. Morphological changes of the grafts were observed by optical and scanning electron microscopic (SEM) studies and compared with that of the original prosthesis and the normal host vessel. All grafts were patent throughout the experiment except one graft. Histopathology and SEM demonstrated both a nearly complete inner capsule of varied thickness lining the graft luminal surface and connective tissue adventitia formation at one-week post-operation. The neointima became confluent at 8 weeks and then compact but had no signs of hyperplasia up to 12 weeks; meanwhile on the neointimal surface newly grown endothelial-like cells were migrating from the stoma to the middle portion. The grafts also illustrated endothelialization in many “islands” in the mid-segment luminal surface of the grafts. In addition, the closer distance the cells towards the stoma were, the more morphological similarity the cells with the normal endothelial were. Taken together, the biological vascular graft remained patent for 24 weeks as a carotid prosthesis, characterized by the early and complete neointima formation plus endothelialization starting before 12 weeks post grafting. Therefore, the graft seems suitable for reconstruction of vascular lesions in dogs. Further studies may be carried out to extend the graft application for the clinical use.展开更多
The aim of this study was to observe the morphological changes of muscle in the process of rigor mortis. The quadriceps of 40 rats at various postmortem intervals were observed under the...The aim of this study was to observe the morphological changes of muscle in the process of rigor mortis. The quadriceps of 40 rats at various postmortem intervals were observed under the scanning electron microscope(SEM) and the light microscope by phosphotungstic acid haematoxylin(PTAH) stain. The results showed that the striations of muscle were blurred within 4 h, but they became apparent from 6 h to 24 h after death. The authors suggest that this phenomenon be associated with the increased resistance of muscle against the postmortal changes. The observations by scanning electron microscopy and light microscopy have revealed that the muscles do contract in the process of rigor mortis because the distance between two Z lines shortens and the I band narrows, compared with those in anaesthetised animals. The basic biochemical process for the formation of rigor mortis is the same as that of muscle contraction except that the former happens postmortem and the latter antemortem.展开更多
Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposit...Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposition of Hg on glassy carbon electrode and Tl on Hg film by cyclic voltammetry, scanning electron microscopy, chronoamperometry and impedance techniques. The results showed a germination and growth of a 3D Hg phase on glassy carbon electrode. Similarly, the electrodeposition of Tl on Hg follows a 3D three-dimensional nucleation with diffusion controlled growth. The impedance measurements reveal an easier charge transfer on the Tl film.展开更多
This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful me...This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful methods related to the different types of mixing are reviewed: complete mixing (blending) or incomplete mixing (mingling). For blending, backscattered electron images and EDS (energy dispersive spectroscopy) are the most accurate methods: an example taken from a sample of ash of the 2007 Stromboli volcano eruption was used. For mingling, the best method is given by X-ray elemental mapping (in particular of Ca and Si), as explained through the example taken from a sample of the 2003 explosive eruption of Soufriere Hills volcano. The aim of this work was to establish whereas would be useful to use backscattered eletron images, EDS, or X-ray elemental mapping techniques, according to the different types of mixing that occur very often in magmatic systems.展开更多
In recent years, the need for low energy materials has become increasingly important. With government targets aiming to reduce carbon emissions by 80% by 2050, and the construction industry being responsible for 50% o...In recent years, the need for low energy materials has become increasingly important. With government targets aiming to reduce carbon emissions by 80% by 2050, and the construction industry being responsible for 50% of the UK's carbon emissions, it is of vital importance that positive changes are made. One of these changes is to reduce the carbon footprint of the materials used in construction. Lime mortar has been used for centuries, but since the arrival of cement, its use in modern construction has diminished, in part due to having lower compressive strengths than cement mortar. Air lime mortar, in particular, can be categorised as low energy due to the reabsorption of a significant amount of COE during the setting process: carbonation. The current study focuses on the impact of different types of aggregate (limestone and silicate) on air lime mortar strength. Previous research has found that higher strengths can be achieved with the use of limestone aggregate, but little is known about the reasons why. The research presented here looks at a microstructural analysis through use of SEM (scanning electron microscopy) in order to determine reasons behind the strength differences. At early stages of curing, there are clear differences at the interface of binder and aggregate.展开更多
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instrument...Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone.It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view.Interactions between incident electrons and atoms on the sample surface generate backscattered electrons,secondary electrons,and various other signals including X-rays that relay compositional and topographical information.Through selective removal or preservation of specific tissue components (organic,inorganic,cellular,vascular),their individual contribution(s) to the overall functional competence can be elucidated.With few restrictions on sample geometry and a variety of applicable sample-processing routes,a given sample may be conveniently adapted for multiple analytical methods.While a conventional SEM operates at high vacuum conditions that demand clean,dry,and electrically conductive samples,non-conductive materials (e.g.,bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope.This review highlights important insights gained into bone microstructure and pathophysiology,bone response to implanted biomaterials,elemental analysis,SEM in paleoarchaeology,3D imaging using focused ion beam techniques,correlative microscopy and in situ experiments.The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum,the SEM lends itself to many unique and diverse applications,which attest to the versatility and user-friendly nature of this instrument for studying bone.Significant technological developments are anticipated for analysing bone using the SEM.展开更多
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a...Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.展开更多
To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Ach...To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM.展开更多
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always...With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.展开更多
The concentrations of 30 elements in aerosol particles collected in western Pacific ocean have been determined by INAA. The crustal element concentrations decrease with increasing distance from land over the remote ar...The concentrations of 30 elements in aerosol particles collected in western Pacific ocean have been determined by INAA. The crustal element concentrations decrease with increasing distance from land over the remote area close to Asia land and fluctuate around its average value over the remote ocean area. The volatile elements exhibite average atmospheric concentrations that are higher than those expected from the flux of seasalt or the continental dust. In order to identify marine aerosol component originating from the continent or ocean, the aerosol particles are examined by scanning electron microscopy combined with energy dispersive X-ray spectroscopy. Particle phase structure shows that the crustal aerosol particles are not present internal mixtures with seasalt aerosol, and it also proves the long-range transport of crustal elements from continent to ocean.展开更多
Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc...Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.展开更多
基金Funded by the National Natural Science Foundation of China(No.52103285)the 111 National Project(No.B20002)。
文摘The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0086835: Dr K Y Kum)the Ministry of Science, ICT and Future Planning (2011-0014231: Dr S W Chang)supported by a grant from the Kyung Hee University in 2013 (KHU-20131045)
文摘The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted human premolars(n560) were instrumented to an apical size #50/0.06 using ProF ile and treated as follows: Group 1(n510) was filled with phosphate buffered saline(PBS); Group 2(n510) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3(n520) was obturated orthograde with a paste of OrthoM TA(BioM TA, Seoul, Korea) and PBS; and Group 4(n520) was incubated with E. faecalis for 3 weeks and then obturated with OrthoM TA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material(IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoM TA-filled roots(Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots(Group 4). Therefore, the orthograde obturation of root canals with OrthoM TA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization.
基金Project supported by the National Natural Science Foundation of China(Grant No.12374223)Shenzhen Science and Technology Program(Grant No.20231117151322001).
文摘Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.
基金Project supported by the National Basic Research Program of China(Grant No.2009CB623702)the National Natural Science Foundation of China(Grant No.10904001)the Key Project Funding Scheme of Beijing Municipal Education Committee,China(Grant No.KZ201010005002)
文摘The local thermal conductivity of polycrystalline aluminum nitride (A1N) ceramics is measured and imaged by using a scanning thermal microscope (SThM) and complementary scanning electron microscope (SEM) based techniques at room temperature. The quantitative thermal conductivity for the A1N sample is gained by using a SThM with a spatial resolution of sub-micrometer scale through using the 3w method. A thermal conductivity of 308 W/m-K within grains corresponding to that of high-purity single crystal A1N is obtained. The slight differences in thermal conduction between the adjacent grains are found to result from crystallographic misorientations, as demonstrated in the electron backscattered diffraction. A much lower thermal conductivity at the grain boundary is due to impurities and defects enriched in these sites, as indicated by energy dispersive X-ray spectroscopy.
基金Supported by Institutional Review Board of Bagcilar Education and Research Hospital,Istanbul,Turkey(No.1852)
文摘AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidiode laser.METHODS:This prospective study included 30consecutive patients with nasolacrimal duct obstruction who underwent EXT-,EN-,or TC-DCR.Thirty removed lacrimal stent fragments and conjunctival samples were cultured.The lacrimal stent biofilms were examined by scanning electron microscopy(SEM).RESULTS:Eleven(36.7%)of the 30 lacrimal stent cultures were positive for aerobic bacteria(most commonly Staphylococcus epidermidis and Pseudomonas aeruginosa).However anaerobic bacteria and fungi were not identified in the lacrimal stent cultures.Twenty-seven(90%)patients had biofilmpositive lacrimal stents.The conjunctival culture positivity after the DCR,biofilm positivity on stents,the grade of biofilm colonization,and the presence of mucus and coccoid and rod-shaped organisms did not significantly differ between any of the groups(P】0.05).However,a significant difference was found when the SEM results were compared to the results of the lacrimal stent and conjunctival cultures(P【0.001).CONCLUSION:Type of dacryocystorhinostomy(DCR)surgery did not affect the biofilm colonization of the lacrimal stents.SEM also appears to be more precise than microbiological culture for evaluating the presence of biofilms on lacrimal stents.
文摘Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.
基金National Key R&D Program of China (2021YFA1501002)National Natural Science Foundation of China (22132007)。
文摘We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembled CoPc monolayer is fabricated on Au(111) substrate and resolved by ECSTM in 0.1 M KOH electrolyte.The OH^(-)adsorption on CoPc prior to OER is observed in ECSTM images.During OER,the generated O_(2) adsorbed on Co Pc is observed in the CoPc monolayer.Potential step experiment is employed to monitor the desorption of OER-generated O_(2) from CoPc,which results in the decreasing surface coverage of CoPc-O_(2) with time.The rate constant of O_(2) desorption is evaluated through data fitting.The insights into the dynamics of Co-O_(2) dissociation at the molecular level via in situ imaging help understand the role of Co-O_(2) in oxygen reduction reaction(ORR) and OER.
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos.U22A6005 and 12074408)the National Key Research and Development Program of China (Grant No.2021YFA1301502)+7 种基金Guangdong Major Scientific Research Project (Grant No.2018KZDXM061)Youth Innovation Promotion Association of CAS (Grant No.2021009)Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos.YJKYYQ20200055,ZDKYYQ2017000,and 22017BA10)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos.XDB25000000 and XDB33010100)Beijing Municipal Science and Technology Major Project (Grant No.Z201100001820006)IOP Hundred Talents Program (Grant No.Y9K5051)Postdoctoral Support Program of China (Grant No.2020M670501)the Synergetic Extreme Condition User Facility (SECUF)。
文摘Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.
基金Hi-tech Research and Development Program of ChinaGrant number:863 program#2006AA03Z441+1 种基金Guangdong Province Scienceand Technology Supporting ProgramGrant number:Project#2006B35830001
文摘A novel biological small-diameter vascular graft was evaluated in a canine model. 3 cm long segments with 4 mm I.D. were implanted end-to-end in the carotid position of 12 dogs for 6 months. Color Doppler sonography was performed at the first week post-operation, and angiography was then administered to 9 grafts at 4th week, 12th week and 24th week respectively to monitor the graft pantency and blood flow characteristics. Vascular samples containing the grafts were collected at 1st week, 8th week, 12th week and 24th week after implantation. Morphological changes of the grafts were observed by optical and scanning electron microscopic (SEM) studies and compared with that of the original prosthesis and the normal host vessel. All grafts were patent throughout the experiment except one graft. Histopathology and SEM demonstrated both a nearly complete inner capsule of varied thickness lining the graft luminal surface and connective tissue adventitia formation at one-week post-operation. The neointima became confluent at 8 weeks and then compact but had no signs of hyperplasia up to 12 weeks; meanwhile on the neointimal surface newly grown endothelial-like cells were migrating from the stoma to the middle portion. The grafts also illustrated endothelialization in many “islands” in the mid-segment luminal surface of the grafts. In addition, the closer distance the cells towards the stoma were, the more morphological similarity the cells with the normal endothelial were. Taken together, the biological vascular graft remained patent for 24 weeks as a carotid prosthesis, characterized by the early and complete neointima formation plus endothelialization starting before 12 weeks post grafting. Therefore, the graft seems suitable for reconstruction of vascular lesions in dogs. Further studies may be carried out to extend the graft application for the clinical use.
文摘The aim of this study was to observe the morphological changes of muscle in the process of rigor mortis. The quadriceps of 40 rats at various postmortem intervals were observed under the scanning electron microscope(SEM) and the light microscope by phosphotungstic acid haematoxylin(PTAH) stain. The results showed that the striations of muscle were blurred within 4 h, but they became apparent from 6 h to 24 h after death. The authors suggest that this phenomenon be associated with the increased resistance of muscle against the postmortal changes. The observations by scanning electron microscopy and light microscopy have revealed that the muscles do contract in the process of rigor mortis because the distance between two Z lines shortens and the I band narrows, compared with those in anaesthetised animals. The basic biochemical process for the formation of rigor mortis is the same as that of muscle contraction except that the former happens postmortem and the latter antemortem.
文摘Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposition of Hg on glassy carbon electrode and Tl on Hg film by cyclic voltammetry, scanning electron microscopy, chronoamperometry and impedance techniques. The results showed a germination and growth of a 3D Hg phase on glassy carbon electrode. Similarly, the electrodeposition of Tl on Hg follows a 3D three-dimensional nucleation with diffusion controlled growth. The impedance measurements reveal an easier charge transfer on the Tl film.
文摘This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful methods related to the different types of mixing are reviewed: complete mixing (blending) or incomplete mixing (mingling). For blending, backscattered electron images and EDS (energy dispersive spectroscopy) are the most accurate methods: an example taken from a sample of ash of the 2007 Stromboli volcano eruption was used. For mingling, the best method is given by X-ray elemental mapping (in particular of Ca and Si), as explained through the example taken from a sample of the 2003 explosive eruption of Soufriere Hills volcano. The aim of this work was to establish whereas would be useful to use backscattered eletron images, EDS, or X-ray elemental mapping techniques, according to the different types of mixing that occur very often in magmatic systems.
文摘In recent years, the need for low energy materials has become increasingly important. With government targets aiming to reduce carbon emissions by 80% by 2050, and the construction industry being responsible for 50% of the UK's carbon emissions, it is of vital importance that positive changes are made. One of these changes is to reduce the carbon footprint of the materials used in construction. Lime mortar has been used for centuries, but since the arrival of cement, its use in modern construction has diminished, in part due to having lower compressive strengths than cement mortar. Air lime mortar, in particular, can be categorised as low energy due to the reabsorption of a significant amount of COE during the setting process: carbonation. The current study focuses on the impact of different types of aggregate (limestone and silicate) on air lime mortar strength. Previous research has found that higher strengths can be achieved with the use of limestone aggregate, but little is known about the reasons why. The research presented here looks at a microstructural analysis through use of SEM (scanning electron microscopy) in order to determine reasons behind the strength differences. At early stages of curing, there are clear differences at the interface of binder and aggregate.
基金Financial support is acknowledged from the Swedish Research Council(K2015-52X-09495-28-4)Svenska Sallskapet for Medicinsk Forskning(SSMF)postdoctoral scholarship,the ALF/LUA Research Grant(ALFGBG-448851)
文摘Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone.It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view.Interactions between incident electrons and atoms on the sample surface generate backscattered electrons,secondary electrons,and various other signals including X-rays that relay compositional and topographical information.Through selective removal or preservation of specific tissue components (organic,inorganic,cellular,vascular),their individual contribution(s) to the overall functional competence can be elucidated.With few restrictions on sample geometry and a variety of applicable sample-processing routes,a given sample may be conveniently adapted for multiple analytical methods.While a conventional SEM operates at high vacuum conditions that demand clean,dry,and electrically conductive samples,non-conductive materials (e.g.,bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope.This review highlights important insights gained into bone microstructure and pathophysiology,bone response to implanted biomaterials,elemental analysis,SEM in paleoarchaeology,3D imaging using focused ion beam techniques,correlative microscopy and in situ experiments.The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum,the SEM lends itself to many unique and diverse applications,which attest to the versatility and user-friendly nature of this instrument for studying bone.Significant technological developments are anticipated for analysing bone using the SEM.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0204001,2018YFA0209103,2016YFB0400101,and 2016YFB0402303)the National Natural Science Foundation of China(Grant Nos.61627822,61704121,61991430,and 62074036)Postdoctoral Research Program of Jiangsu Province(Grant No.2021K599C).
文摘Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.
基金supported by a characterization platform for advanced materials funded by the Korea Research Institute of Standards and Science(KRISS-2023-GP2023-0014)the KRISS(Korea Research Institute of Standards and Science)MPI Lab.program。
文摘To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM.
基金supported by the National Natural Science Foundation of China(No.22209027)the Shenzhen Science and Technology Program(No.JCYJ20220530142806015 and No.JCYJ20220818101008018)+1 种基金the Shenzhen“Pengcheng Peacock Program’the Tsinghua SIGS Cross-disciplinary Research and Innovation Fund(No.JC2022002)。
文摘With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.
文摘The concentrations of 30 elements in aerosol particles collected in western Pacific ocean have been determined by INAA. The crustal element concentrations decrease with increasing distance from land over the remote area close to Asia land and fluctuate around its average value over the remote ocean area. The volatile elements exhibite average atmospheric concentrations that are higher than those expected from the flux of seasalt or the continental dust. In order to identify marine aerosol component originating from the continent or ocean, the aerosol particles are examined by scanning electron microscopy combined with energy dispersive X-ray spectroscopy. Particle phase structure shows that the crustal aerosol particles are not present internal mixtures with seasalt aerosol, and it also proves the long-range transport of crustal elements from continent to ocean.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12374196,92165201,11634011,and 22109153)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302800)+4 种基金the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-046)the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000006 and WK3430000003)the Fund of Anhui Initiative in Quantum Information Technologies (Grant No.AHY170000)the University Synergy Innovation Program of Anhui Province,China (Grant No.GXXT-2022-008)the National Synchrotron Radiation Laboratory Joint Funds of University of Science and Technology of China (Grant No.KY2060000241)。
文摘Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.