As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D...As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.展开更多
It is of great significance to analyze the chemical indexes of mine water and develop a rapid identification system of water source, which can quickly and accurately distinguish the causes of water inrush and identify...It is of great significance to analyze the chemical indexes of mine water and develop a rapid identification system of water source, which can quickly and accurately distinguish the causes of water inrush and identify the source of water inrush, so as to reduce casualties and economic losses and prevent and control water inrush disasters. Taking Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> + K<sup>+</sup>, , , Cl<sup>-</sup>, pH value and TDS as discriminant indexes, the principal component analysis method was used to reduce the dimension of data, and the identification model of mine water inrush source based on PCA-BP neural network was established. 96 sets of data of different aquifers in Panxie mining area were selected for prediction analysis, and 20 sets of randomly selected data were tested, with an accuracy rate of 95%. The model can effectively reduce data redundancy, has a high recognition rate, and can accurately and quickly identify the water source of mine water inrush.展开更多
This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully ...This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.展开更多
As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep co...As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method.展开更多
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu...It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.展开更多
奥灰岩溶裂隙含水层是影响华北型煤矿深部开采的重要水害,在水-岩相互作用下奥灰含水层易导致煤层底板突水。为进一步认识奥灰岩溶突水问题,文章以新集矿区深部1煤层开采为例,利用矿区近些年最新积累的奥灰钻孔资料,选取断层强度指数、...奥灰岩溶裂隙含水层是影响华北型煤矿深部开采的重要水害,在水-岩相互作用下奥灰含水层易导致煤层底板突水。为进一步认识奥灰岩溶突水问题,文章以新集矿区深部1煤层开采为例,利用矿区近些年最新积累的奥灰钻孔资料,选取断层强度指数、断层交叉点与尖灭点、含水层水压、富水性、隔水层等效厚度、脆塑比7个因素作为奥灰岩溶突水的主控因素,并结合层次分析法(analytic hierarchy process,AHP)确定各主控因素影响权重。运用地理信息系统(geographic information system,GIS)空间分析功能建立各主控因素专题图,通过对专题栅格图归一化处理,将各主控因素按照权重进行空间复合叠加,最终获得1煤层底板奥灰岩溶突水危险性评价分区结果。将评价结果与突水系数法计算结果对比分析可知,基于GIS的煤层底板突水危险性评价方法更符合矿区实际地质情况,可以为矿区深部煤层开采与水害防治工作提供参考依据。展开更多
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1805400)。
文摘As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.
文摘It is of great significance to analyze the chemical indexes of mine water and develop a rapid identification system of water source, which can quickly and accurately distinguish the causes of water inrush and identify the source of water inrush, so as to reduce casualties and economic losses and prevent and control water inrush disasters. Taking Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> + K<sup>+</sup>, , , Cl<sup>-</sup>, pH value and TDS as discriminant indexes, the principal component analysis method was used to reduce the dimension of data, and the identification model of mine water inrush source based on PCA-BP neural network was established. 96 sets of data of different aquifers in Panxie mining area were selected for prediction analysis, and 20 sets of randomly selected data were tested, with an accuracy rate of 95%. The model can effectively reduce data redundancy, has a high recognition rate, and can accurately and quickly identify the water source of mine water inrush.
基金Project 2006CB202200 supported by the National Basic Research Program of Chinathe National Major Project of Ministry of Education (304005)the Program for Changjiang Scholars and Innovative Research Team in University of China (NoIRT0656)
文摘This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.
基金Financial support for this project, provided by the National Basic Research Program of China (No. 2006CB202200)the National Major Project of Ministry of Education (No.304005) the Program for Changjiang Scholars and Innovative Research Team in University of China (No.IRT0656), is gratefully acknowledged
文摘As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method.
基金the National Basic Research Program of China(No.2007CB209401) for its financial support
文摘It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.
文摘奥灰岩溶裂隙含水层是影响华北型煤矿深部开采的重要水害,在水-岩相互作用下奥灰含水层易导致煤层底板突水。为进一步认识奥灰岩溶突水问题,文章以新集矿区深部1煤层开采为例,利用矿区近些年最新积累的奥灰钻孔资料,选取断层强度指数、断层交叉点与尖灭点、含水层水压、富水性、隔水层等效厚度、脆塑比7个因素作为奥灰岩溶突水的主控因素,并结合层次分析法(analytic hierarchy process,AHP)确定各主控因素影响权重。运用地理信息系统(geographic information system,GIS)空间分析功能建立各主控因素专题图,通过对专题栅格图归一化处理,将各主控因素按照权重进行空间复合叠加,最终获得1煤层底板奥灰岩溶突水危险性评价分区结果。将评价结果与突水系数法计算结果对比分析可知,基于GIS的煤层底板突水危险性评价方法更符合矿区实际地质情况,可以为矿区深部煤层开采与水害防治工作提供参考依据。