Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the...Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the Internet of Things(IoT).An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism(ACMDGTM)algorithm is proposed which would mitigate the problem of“hot spots”among sensors to enhance the lifetime of networks.The clustering process takes sensors’location and residual energy into consideration to elect suitable cluster heads.Furthermore,one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself.Related experimental results display that the presented method can avoid long distance communicate between sensor nodes.Furthermore,this algorithm reduces energy consumption effectively and improves package delivery rate.展开更多
This paper considers an underwater acoustic sensor network with one mobile surface node to collect data from multiple underwater nodes,where the mobile destination requests retransmission from each underwater node ind...This paper considers an underwater acoustic sensor network with one mobile surface node to collect data from multiple underwater nodes,where the mobile destination requests retransmission from each underwater node individually employing traditional automatic-repeat-request(ARQ) protocol.We propose a practical node cooperation(NC) protocol to enhance the collection efficiency,utilizing the fact that underwater nodes can overhear the transmission of others.To reduce the source level of underwater nodes,the underwater data collection area is divided into several sub-zones,and in each sub-zone,the mobile surface node adopting the NC protocol could switch adaptively between selective relay cooperation(SRC) and dynamic network coded cooperation(DNC) .The difference of SRC and DNC lies in whether or not the selected relay node combines the local data and the data overheard from undecoded node(s) to form network coded packets in the retransmission phase.The NC protocol could also be applied across the sub-zones due to the wiretap property.In addition,we investigate the effects of different mobile collection paths,collection area division and cooperative zone design for energy saving.The numerical results showthat the proposed NC protocol can effectively save energy compared with the traditional ARQ scheme.展开更多
基金This work is supported by the National Natural Science Foundation of China(61772454,61811530332,61811540410,U1836208).
文摘Recently,Wireless sensor networks(WSNs)have become very popular research topics which are applied to many applications.They provide pervasive computing services and techniques in various potential applications for the Internet of Things(IoT).An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism(ACMDGTM)algorithm is proposed which would mitigate the problem of“hot spots”among sensors to enhance the lifetime of networks.The clustering process takes sensors’location and residual energy into consideration to elect suitable cluster heads.Furthermore,one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself.Related experimental results display that the presented method can avoid long distance communicate between sensor nodes.Furthermore,this algorithm reduces energy consumption effectively and improves package delivery rate.
基金supported in part by National Key Research and Development Program of China under Grants No.2016YFC1400200 and 2016YFC1400204National Natural Science Foundation of China under Grants No.41476026,41676024 and 41376040Fundamental Research Funds for the Central Universities of China under Grant No.220720140506
文摘This paper considers an underwater acoustic sensor network with one mobile surface node to collect data from multiple underwater nodes,where the mobile destination requests retransmission from each underwater node individually employing traditional automatic-repeat-request(ARQ) protocol.We propose a practical node cooperation(NC) protocol to enhance the collection efficiency,utilizing the fact that underwater nodes can overhear the transmission of others.To reduce the source level of underwater nodes,the underwater data collection area is divided into several sub-zones,and in each sub-zone,the mobile surface node adopting the NC protocol could switch adaptively between selective relay cooperation(SRC) and dynamic network coded cooperation(DNC) .The difference of SRC and DNC lies in whether or not the selected relay node combines the local data and the data overheard from undecoded node(s) to form network coded packets in the retransmission phase.The NC protocol could also be applied across the sub-zones due to the wiretap property.In addition,we investigate the effects of different mobile collection paths,collection area division and cooperative zone design for energy saving.The numerical results showthat the proposed NC protocol can effectively save energy compared with the traditional ARQ scheme.