Let N denote the set of positive integers. The sum graph G^+(S) of a finite subset S belong to N is the graph (S, E) with uv ∈ E if and only if u + v ∈ S. A graph G is said to be a sum graph if it is isomorph...Let N denote the set of positive integers. The sum graph G^+(S) of a finite subset S belong to N is the graph (S, E) with uv ∈ E if and only if u + v ∈ S. A graph G is said to be a sum graph if it is isomorphic to the sum graph of some S belong to N. By using the set Z of all integers instead of N, we obtain the definition of the integral sum graph. A graph G = (V, E) is a mod sum graph if there exists a positive integer z and a labelling, λ, of the vertices of G with distinct elements from {0, 1, 2,..., z - 1} so that uv ∈ E if and only if the sum, modulo z, of the labels assigned to u and v is the label of a vertex of G. In this paper, we prove that flower tree is integral sum graph. We prove that Dutch m-wind-mill (Dm) is integral sum graph and mod sum graph, and give the sum number of Dm.展开更多
文摘Let N denote the set of positive integers. The sum graph G^+(S) of a finite subset S belong to N is the graph (S, E) with uv ∈ E if and only if u + v ∈ S. A graph G is said to be a sum graph if it is isomorphic to the sum graph of some S belong to N. By using the set Z of all integers instead of N, we obtain the definition of the integral sum graph. A graph G = (V, E) is a mod sum graph if there exists a positive integer z and a labelling, λ, of the vertices of G with distinct elements from {0, 1, 2,..., z - 1} so that uv ∈ E if and only if the sum, modulo z, of the labels assigned to u and v is the label of a vertex of G. In this paper, we prove that flower tree is integral sum graph. We prove that Dutch m-wind-mill (Dm) is integral sum graph and mod sum graph, and give the sum number of Dm.