In this paper, we present a study on activity functions for an MLNN (multi-layered neural network) and propose a suitable activity function for data enlargement processing. We have carefully studied the training perfo...In this paper, we present a study on activity functions for an MLNN (multi-layered neural network) and propose a suitable activity function for data enlargement processing. We have carefully studied the training performance of Sigmoid, ReLu, Leaky-ReLu and L & exp. activity functions for few inputs to multiple output training patterns. Our MLNNs model has L hidden layers with two or three inputs to four or six outputs data variations by BP (backpropagation) NN (neural network) training. We focused on the multi teacher training signals to investigate and evaluate the training performance in MLNNs to select the best and good activity function for data enlargement and hence could be applicable for image and signal processing (synaptic divergence) along with the proposed methods with convolution networks. We specifically used four activity functions from which we found out that L & exp. activity function can suite DENN (data enlargement neural network) training since it could give the highest percentage training abilities compared to the other activity functions of Sigmoid, ReLu and Leaky-ReLu during simulation and training of data in the network. And finally, we recommend L & exp. function to be good for MLNNs and may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple teacher training patterns using original generated data and hence can be tried with CNN (convolution neural networks) of image processing.展开更多
To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mo...To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.展开更多
The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for mul...The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on Rosenblatt's transformation was mathematically expanded from two dimensions to three dimensions and procedures of a bootstrap version of the test were provided. Through stochastic copula simulation, an empirical application of historical drought data at the Lintong Gauge Station shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and Student t copulas are acceptable for modeling the dependence structures of the observed drought duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide further support and help a lot in the potential applications of a wider range of copulas to describe the associations of correlated hydrological variables. However, for the application of copulas with the number of dimensions larger than three, more complicated computational efforts as well as exploration and parameterization of corresponding copulas are required.展开更多
Multidimensional data query has been gaining much interest in database research communities in recent years, yet many of the existing studies focus mainly on ten tralized systems. A solution to querying in Peer-to-Pee...Multidimensional data query has been gaining much interest in database research communities in recent years, yet many of the existing studies focus mainly on ten tralized systems. A solution to querying in Peer-to-Peer(P2P) environment was proposed to achieve both low processing cost in terms of the number of peers accessed and search messages and balanced query loads among peers. The system is based on a balanced tree structured P2P network. By partitioning the query space intelligently, the amount of query forwarding is effectively controlled, and the number of peers involved and search messages are also limited. Dynamic load balancing can be achieved during space partitioning and query resolving. Extensive experiments confirm the effectiveness and scalability of our algorithms on P2P networks.展开更多
The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper...The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.展开更多
Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripeni...Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripening rate, water status, nutrient levels, and disease risk. In this paper, we implement imaging spectroscopy (hyperspectral) reflectance data, for the reflective 330 - 2510 nm wavelength region (986 total spectral bands), to assess vineyard nutrient status;this constitutes a high dimensional dataset with a covariance matrix that is ill-conditioned. The identification of the variables (wavelength bands) that contribute useful information for nutrient assessment and prediction, plays a pivotal role in multivariate statistical modeling. In recent years, researchers have successfully developed many continuous, nearly unbiased, sparse and accurate variable selection methods to overcome this problem. This paper compares four regularized and one functional regression methods: Elastic Net, Multi-Step Adaptive Elastic Net, Minimax Concave Penalty, iterative Sure Independence Screening, and Functional Data Analysis for wavelength variable selection. Thereafter, the predictive performance of these regularized sparse models is enhanced using the stepwise regression. This comparative study of regression methods using a high-dimensional and highly correlated grapevine hyperspectral dataset revealed that the performance of Elastic Net for variable selection yields the best predictive ability.展开更多
In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and impl...In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.展开更多
The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased si...The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications.展开更多
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl...Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.展开更多
In this paper, we consider the optimal problem of channels sharing with het-erogeneous traffic (real-time service and non-real-time service) to reduce the data conflict probability of users. Moreover, a multi-dimens...In this paper, we consider the optimal problem of channels sharing with het-erogeneous traffic (real-time service and non-real-time service) to reduce the data conflict probability of users. Moreover, a multi-dimensional Markov chain model is developed to analyze the performance of the proposed scheme. Meanwhile, performance metrics are derived. Numerical results show that the proposed scheme can effectively reduce the forced termination probability, blocking probability and spectrum utilization.展开更多
Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simul...Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 10^7. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large.展开更多
In response to the construction needs of “Real 3D China”, the system structure, functional framework, application direction and product form of block level augmented reality three-dimensional map is designed. Those ...In response to the construction needs of “Real 3D China”, the system structure, functional framework, application direction and product form of block level augmented reality three-dimensional map is designed. Those provide references and ideas for the later large-scale production of augmented reality three-dimensional map. The augmented reality three-dimensional map is produced based on skyline software. Including the map browsing, measurement and analysis and so on, the basic function of three-dimensional map is realized. The special functional module including housing management, pipeline management and so on is developed combining the need of residential quarters development, that expands the application fields of augmented reality three-dimensional map. Those lay the groundwork for the application of augmented reality three-dimensional map. .展开更多
Recently, sequence anomaly detection has been widely used in many fields. Sequence data in these fields are usually multi-dimensional over the data stream. It is a challenge to design an anomaly detection method for a...Recently, sequence anomaly detection has been widely used in many fields. Sequence data in these fields are usually multi-dimensional over the data stream. It is a challenge to design an anomaly detection method for a multi-dimensional sequence over the data stream to satisfy the requirements of accuracy and high speed. It is because:(1) Redundant dimensions in sequence data and large state space lead to a poor ability for sequence modeling;(2) Anomaly detection cannot adapt to the high-speed nature of the data stream, especially when concept drift occurs, and it will reduce the detection rate. On one hand, most existing methods of sequence anomaly detection focus on the single-dimension sequence. On the other hand, some studies concerning multi-dimensional sequence concentrate mainly on the static database rather than the data stream. To improve the performance of anomaly detection for a multi-dimensional sequence over the data stream, we propose a novel unsupervised fast and accurate anomaly detection(FAAD) method which includes three algorithms. First, a method called "information calculation and minimum spanning tree cluster" is adopted to reduce redundant dimensions. Second, to speed up model construction and ensure the detection rate for the sequence over the data stream, we propose a method called"random sampling and subsequence partitioning based on the index probabilistic suffix tree." Last, the method called "anomaly buffer based on model dynamic adjustment" dramatically reduces the effects of concept drift in the data stream. FAAD is implemented on the streaming platform Storm to detect multi-dimensional log audit data.Compared with the existing anomaly detection methods, FAAD has a good performance in detection rate and speed without being affected by concept drift.展开更多
Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in ...Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.展开更多
On the basis of Space-Wise Least Square method, three numerical methods including Cholesky de- composition, pre-conditioned conjugate gradient and Open Multi-Processing parallel algorithm are applied into the determin...On the basis of Space-Wise Least Square method, three numerical methods including Cholesky de- composition, pre-conditioned conjugate gradient and Open Multi-Processing parallel algorithm are applied into the determination of gravity field with satellite gravity gradiometry data. The results show that, Cholesky de- composition method has been unable to meet the requirements of computation efficiency when the computer hardware is limited. Pre-conditioned conjugate gradient method can improve the computation efficiency of huge matrix inversion, but it also brings a certain loss of precision. The application of Open Multi-Processing parallel algorithm could achieve a good compromise between accuracy and computation efficiency.展开更多
文摘In this paper, we present a study on activity functions for an MLNN (multi-layered neural network) and propose a suitable activity function for data enlargement processing. We have carefully studied the training performance of Sigmoid, ReLu, Leaky-ReLu and L & exp. activity functions for few inputs to multiple output training patterns. Our MLNNs model has L hidden layers with two or three inputs to four or six outputs data variations by BP (backpropagation) NN (neural network) training. We focused on the multi teacher training signals to investigate and evaluate the training performance in MLNNs to select the best and good activity function for data enlargement and hence could be applicable for image and signal processing (synaptic divergence) along with the proposed methods with convolution networks. We specifically used four activity functions from which we found out that L & exp. activity function can suite DENN (data enlargement neural network) training since it could give the highest percentage training abilities compared to the other activity functions of Sigmoid, ReLu and Leaky-ReLu during simulation and training of data in the network. And finally, we recommend L & exp. function to be good for MLNNs and may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple teacher training patterns using original generated data and hence can be tried with CNN (convolution neural networks) of image processing.
基金supported by the National Natural Science Foundation of China (Grant No. 50539010, 50539110, 50579010, 50539030 and 50809025)
文摘To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.
基金supported by the Program of Introducing Talents of Disciplines to Universities of the Ministry of Education and State Administration of the Foreign Experts Affairs of China (the 111 Project, Grant No.B08048)the Special Basic Research Fund for Methodology in Hydrology of the Ministry of Sciences and Technology of China (Grant No. 2011IM011000)
文摘The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on Rosenblatt's transformation was mathematically expanded from two dimensions to three dimensions and procedures of a bootstrap version of the test were provided. Through stochastic copula simulation, an empirical application of historical drought data at the Lintong Gauge Station shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and Student t copulas are acceptable for modeling the dependence structures of the observed drought duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide further support and help a lot in the potential applications of a wider range of copulas to describe the associations of correlated hydrological variables. However, for the application of copulas with the number of dimensions larger than three, more complicated computational efforts as well as exploration and parameterization of corresponding copulas are required.
基金Supported by the Natural Science Foundation ofJiangsu Province(BG2004034)
文摘Multidimensional data query has been gaining much interest in database research communities in recent years, yet many of the existing studies focus mainly on ten tralized systems. A solution to querying in Peer-to-Peer(P2P) environment was proposed to achieve both low processing cost in terms of the number of peers accessed and search messages and balanced query loads among peers. The system is based on a balanced tree structured P2P network. By partitioning the query space intelligently, the amount of query forwarding is effectively controlled, and the number of peers involved and search messages are also limited. Dynamic load balancing can be achieved during space partitioning and query resolving. Extensive experiments confirm the effectiveness and scalability of our algorithms on P2P networks.
文摘The geological data are constructed in vector format in geographical information system (GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.
文摘Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripening rate, water status, nutrient levels, and disease risk. In this paper, we implement imaging spectroscopy (hyperspectral) reflectance data, for the reflective 330 - 2510 nm wavelength region (986 total spectral bands), to assess vineyard nutrient status;this constitutes a high dimensional dataset with a covariance matrix that is ill-conditioned. The identification of the variables (wavelength bands) that contribute useful information for nutrient assessment and prediction, plays a pivotal role in multivariate statistical modeling. In recent years, researchers have successfully developed many continuous, nearly unbiased, sparse and accurate variable selection methods to overcome this problem. This paper compares four regularized and one functional regression methods: Elastic Net, Multi-Step Adaptive Elastic Net, Minimax Concave Penalty, iterative Sure Independence Screening, and Functional Data Analysis for wavelength variable selection. Thereafter, the predictive performance of these regularized sparse models is enhanced using the stepwise regression. This comparative study of regression methods using a high-dimensional and highly correlated grapevine hyperspectral dataset revealed that the performance of Elastic Net for variable selection yields the best predictive ability.
文摘In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.
基金supported in part by the National Natural Science Foundation of China(NSFC)(92167106,61833014)Key Research and Development Program of Zhejiang Province(2022C01206)。
文摘The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications.
基金Project(61362021)supported by the National Natural Science Foundation of ChinaProject(2016GXNSFAA380149)supported by Natural Science Foundation of Guangxi Province,China+1 种基金Projects(2016YJCXB02,2017YJCX34)supported by Innovation Project of GUET Graduate Education,ChinaProject(2011KF11)supported by the Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education,China
文摘Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.
基金supported in part by the National Natural Science Foundation of China(60972016,61231010)the Funds of Distinguished Young Scientists(2009CDA150)+1 种基金China-Finnish Cooperation Project(2010DFB10570)Specialized Research Fund for the Doctoral Program of Higher Education(20120142110015)
文摘In this paper, we consider the optimal problem of channels sharing with het-erogeneous traffic (real-time service and non-real-time service) to reduce the data conflict probability of users. Moreover, a multi-dimensional Markov chain model is developed to analyze the performance of the proposed scheme. Meanwhile, performance metrics are derived. Numerical results show that the proposed scheme can effectively reduce the forced termination probability, blocking probability and spectrum utilization.
基金supported by College of William and Mary,Virginia Institute of Marine Science for the study environment
文摘Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equation (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity flows with the Reynolds numbers up to 1 × 10^7. To improve the computation efficiency of LBM on the numerical simulations of turbulent flows, the massively parallel computing power from a graphic processing unit (GPU) with a computing unified device architecture (CUDA) is introduced into the MRT-LBE-LES model. The model performs well, compared with the results from others, with an increase of 76 times in computation efficiency. It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant should be, if the lattice number is fixed. Also, for a selected high Reynolds number and a selected proper Smagorinsky constant, there is a minimum requirement for the lattice number so that the Smagorinsky eddy viscosity will not be excessively large.
文摘In response to the construction needs of “Real 3D China”, the system structure, functional framework, application direction and product form of block level augmented reality three-dimensional map is designed. Those provide references and ideas for the later large-scale production of augmented reality three-dimensional map. The augmented reality three-dimensional map is produced based on skyline software. Including the map browsing, measurement and analysis and so on, the basic function of three-dimensional map is realized. The special functional module including housing management, pipeline management and so on is developed combining the need of residential quarters development, that expands the application fields of augmented reality three-dimensional map. Those lay the groundwork for the application of augmented reality three-dimensional map. .
基金Project supported by the National Key R&D Program of China(No.2016YFB1000101)the National Natural Science Foundation of China(Nos.61379052 and 61502513)+1 种基金the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China(No.14JJ1026)the Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20124307110015)
文摘Recently, sequence anomaly detection has been widely used in many fields. Sequence data in these fields are usually multi-dimensional over the data stream. It is a challenge to design an anomaly detection method for a multi-dimensional sequence over the data stream to satisfy the requirements of accuracy and high speed. It is because:(1) Redundant dimensions in sequence data and large state space lead to a poor ability for sequence modeling;(2) Anomaly detection cannot adapt to the high-speed nature of the data stream, especially when concept drift occurs, and it will reduce the detection rate. On one hand, most existing methods of sequence anomaly detection focus on the single-dimension sequence. On the other hand, some studies concerning multi-dimensional sequence concentrate mainly on the static database rather than the data stream. To improve the performance of anomaly detection for a multi-dimensional sequence over the data stream, we propose a novel unsupervised fast and accurate anomaly detection(FAAD) method which includes three algorithms. First, a method called "information calculation and minimum spanning tree cluster" is adopted to reduce redundant dimensions. Second, to speed up model construction and ensure the detection rate for the sequence over the data stream, we propose a method called"random sampling and subsequence partitioning based on the index probabilistic suffix tree." Last, the method called "anomaly buffer based on model dynamic adjustment" dramatically reduces the effects of concept drift in the data stream. FAAD is implemented on the streaming platform Storm to detect multi-dimensional log audit data.Compared with the existing anomaly detection methods, FAAD has a good performance in detection rate and speed without being affected by concept drift.
基金University Doctor Subject Foundation of China (20060699024)
文摘Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.
基金supproted by the National Natural Science Foundation of China(40874012,40904003,40974016,41004007)
文摘On the basis of Space-Wise Least Square method, three numerical methods including Cholesky de- composition, pre-conditioned conjugate gradient and Open Multi-Processing parallel algorithm are applied into the determination of gravity field with satellite gravity gradiometry data. The results show that, Cholesky de- composition method has been unable to meet the requirements of computation efficiency when the computer hardware is limited. Pre-conditioned conjugate gradient method can improve the computation efficiency of huge matrix inversion, but it also brings a certain loss of precision. The application of Open Multi-Processing parallel algorithm could achieve a good compromise between accuracy and computation efficiency.