Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 16...Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 167 winter jujube samples from the main winter jujube producing areas of China by inductively coupled plasma mass spectrometer(ICP-MS).As a result,16 elements(Mg,K,Mn,Cu,Zn,Mo,Ba,Be,As,Se,Cd,Sb,Ce,Er,Tl,and Pb)exhibited significant differences in samples from different producing areas.Supervised linear discriminant analysis(LDA)and orthogonal projection to latent structures discriminant analysis(OPLS-DA)showed better performance in identifying the origin of samples than unsupervised principal component analysis(PCA).LDA and OPLS-DA had a mean identification accuracy of 87.84 and 94.64%in the testing set,respectively.By using the multilayer perceptron(MLP)and C5.0,the prediction accuracy of the models could reach 96.36 and 91.06%,respectively.Based on the above four chemometric methods,Cd,Tl,Mo and Se were selected as the main variables and principal markers for the origin identification of winter jujube.Overall,this study demonstrates that it is practical and precise to identify the origin of winter jujube through multi-element fingerprint analysis with chemometrics,and may also provide reference for establishing the origin traceability system of other fruits.展开更多
For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grid...For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.展开更多
A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define...A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.展开更多
Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-elem...Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content.展开更多
To study the effects of the gamma reflection of multi-element materials,gamma ray transport models of single-element materials,such as iron and lead,and multielement materials,such as polyethylene and ordinary concret...To study the effects of the gamma reflection of multi-element materials,gamma ray transport models of single-element materials,such as iron and lead,and multielement materials,such as polyethylene and ordinary concrete,were established in this study.Relationships among the albedo factors of the gamma photons and energies and average energy of the reflected gamma rays by material type,material thickness,incident gamma energy,and incidence angle of gamma rays were obtained by Monte Carlo simulation.The results show that the albedo factors of single-element and multi-element materials increase rapidly with an increase in the material thickness.When the thickness of the material increases to a certain value,the albedo factors do not increase further but rather tend to the saturation value.The saturation values for the albedo factors of the gamma photons,and energies and the reflection thickness are related not only to the type of material but also to the incident gamma energy and incidence angle of the gamma rays.At a given incident gamma energy,which is between 0.2 and 2.5 MeV,the smaller the effective atomic number of the multi-element material is,the higher the saturation values of the albedo factors are.The larger the incidence angle of the gamma ray is,the greater the saturation value of the gamma albedo factor,saturation reflection thickness,and average saturation energy of the reflected gamma photons are.展开更多
The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution s...The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution spatial differential method for large eddy simulation(LES),which can guarantee accuracy and efficiency.The aeroacoustic analysis for noise level is calculated with Ffowcs Williams-Hawkings(FW-H)integration formula.Fidelity of calculation is verified by standard models.Method of streamline-based Euler simulation(MSES)is used to obtain the aerodynamic characters.Based on the confirmation of numerical methods,detailed research has been conducted for the leading edge slat on multi-element airfoils.Various slot parameter influences on noise are analyzed.The results of the slot optimization parameters can be used in multi-element airfoil design.展开更多
Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the pr...Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the problems,this paper proposes a DDoS attack information fusion method based on CNN for multi-element data.Firstly,according to the distribution,concentration and high traffic abruptness of DDoS attacks,this paper defines six features which are respectively obtained from the elements of source IP address,destination IP address,source port,destination port,packet size and the number of IP packets.Then,we propose feature weight calculation algorithm based on principal component analysis to measure the importance of different features in different network environment.The algorithm of weighted multi-element feature fusion proposed in this paper is used to fuse different features,and obtain multi-element fusion feature(MEFF)value.Finally,the DDoS attack information fusion classification model is established by using convolutional neural network and support vector machine respectively based on the MEFF time series.Experimental results show that the information fusion method proposed can effectively fuse multi-element data,reduce the missing rate and total error rate,memory resource consumption,running time,and improve the detection rate.展开更多
A factor analysis was applied to soil geochemical data to define anomalies related to buried Pb-Zn mineralization.A favorable main factor with a strong association of the elements Zn,Cu and Pb,related to mineralizatio...A factor analysis was applied to soil geochemical data to define anomalies related to buried Pb-Zn mineralization.A favorable main factor with a strong association of the elements Zn,Cu and Pb,related to mineralization,was selected for interpretation.The median+2 MAD(median absolute deviation)method of exploratory data analysis(EDA)and C-A(concentration-area)fractal modeling were then applied to the Mahalanobis distance,as defined by Zn,Cu and Pb from the factor analysis to set the thresholds for defining multi-element anomalies.As a result,the median+2 MAD method more successfully identified the Pb-Zn mineralization than the C-A fractal model.The soil anomaly identified by the median+2 MAD method on the Mahalanobis distances defined by three principal elements(Zn,Cu and Pb)rather than thirteen elements(Co,Zn,Cu,V,Mo,Ni,Cr,Mn,Pb,Ba,Sr,Zr and Ti)was the more favorable reflection of the ore body.The identified soil geochemical anomalies were compared with the in situ economic Pb-Zn ore bodies for validation.The results showed that the median+2 MAD approach is capable of mapping both strong and weak geochemical anomalies related to buried Pb-Zn mineralization,which is therefore useful at the reconnaissance drilling stage.展开更多
Multi-element analysis in historical sites is a major issue in archaeological studies;however,this approach is almost unknown among Iranian scholars.Geochemical multi-element analysis of soil is very important to eval...Multi-element analysis in historical sites is a major issue in archaeological studies;however,this approach is almost unknown among Iranian scholars.Geochemical multi-element analysis of soil is very important to evaluate anthropogenic activities.The aim of this study consists of assessing the potential usefulness of multi-elemental soil analysis,obtained by Analytical Jena atomic absorption spectrophotometer(AAS) and ICP-MS,to recognize ancient anthropogenic features on the territory of Tappe Rivi(North Khorasan,Iran).For that purpose,a total of 80 ancient soil samples were sampled from each soil horizon and cultural layer.The research involved Fe,Al,Cd,Cu,Ni,Co,Cr,Pb,and P which trace element samples were extracted according to the International Standard ISO 11466 and phosphorus samples by Olsen method.Besides,the contamination of the soils was assessed based on enrichment factors(EFs) by using Fe as a reference element.This geochemical/archaeological approach highlights that the content of most elements in the Parthian and Sassanid ages were significantly higher than the contents of the elements in other zones,which shows that by the development of the eras,the content of the elements has also increased.Also,the accumulation of metals in the Rivi site was significantly higher than in the control area.Among the sampled zones,enrichment factor(EF) indicated that the enrichment of Cu and phosphate at the Parthian and Sassanid had the highest content.This result is important because it shows that the amount of metals and human activities are directly related to each other during different ages.展开更多
The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized...The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.展开更多
A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leave...A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.展开更多
A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing charact...A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.展开更多
This investigation aimed to establish the geographical traceability of Malaysian rice by assessing the elemental composition in paddy soil.Multi-element determination in combination with a chemometric approach was app...This investigation aimed to establish the geographical traceability of Malaysian rice by assessing the elemental composition in paddy soil.Multi-element determination in combination with a chemometric approach was applied to evaluate the elemental concentrations of paddy soil from granaries cultivated with the same rice variety and to assess the relationship between elements in the soil and rice(SAR) system.A total of 29 elements(aluminum,arsenic,barium,bromine,calcium,chlorine,cobalt,chromium,cesium,europium,iron,gallium,hafnium,potassium,lanthanum,lutetium,magnesium,manganese,sodium,rubidium,antimony,scandium,samarium,thorium,titanium,uranium,vanadium,ytterbium and zinc) were successfully determined in paddy soil from Kedah,Selangor and Langkawi by neutron activation analysis.A significant difference(P < 0.05) between 18 elements in the soil samples was obtained.The chemometric approaches of principal component and linear discriminant analyses demonstrated clear discrimination and highly corrected classification(100%) of the soil samples.A high classification(98.1%) was also achieved by assessing 10 elements(aluminum,arsenic,bromine,chlorine,potassium,magnesium,manganese,sodium,rubidium and zinc),which similarly applied to rice geographical origin determination.Similar elements in SAR were also observed for differences in the pattern of correlation and bioaccumulation factor between the granaries.Furthermore,the generalized Procrustes analysis showed a 98% consensus between SAR and clear differences between the studied regions.The canonical correlation analysis demonstrated a significant correlation between the chemical profile of SAR(r~2 = 0.88,P < 0.001).Therefore,the current work model provides a reliable assessment to establish rice provenance.展开更多
Electrocatalytic nitrate reduction reaction is considered as a promising and sustainable method for ammonia synthesis.However,the selectivity and yield rate of ammonia are limited by the competitive hydrogen evolution...Electrocatalytic nitrate reduction reaction is considered as a promising and sustainable method for ammonia synthesis.However,the selectivity and yield rate of ammonia are limited by the competitive hydrogen evolution reaction and the complex eight-electron transfer process.Herein,we developed a(FeCoNiCu)Ox/CeO_(2)polymetallic oxide electrocatalyst for effective nitrate reduction to ammonia.The synergistic effects among the multiple elements in the electrocatalyst were clearly elucidated by comprehensive experiments.Specifically,Cu acted as the active site for reducing nitrate to nitrite,and Co facilitated the subsequent reduction of nitrite to ammonia,while Fe and Ni promoted water dissociation to provide protons.Furthermore,the incorporation of CeO_(2)increased the active surface area of(FeCoNiCu)Ox,resulting in an improved ammonia yield rate to meet industrial demands.Consequently,the(FeCoNiCu)Ox/CeO_(2)electrocatalyst achieved an ammonia current density of 382 mA cm^(-2)and a high ammonia yield rate of 30.3 mg h^(-1)cm^(-2)with a long-term stability.This work offers valuable insights for the future design of highly efficient multi-element electrocatalysts.展开更多
When exposed to moderate to high temperatures,nanomaterials typically suffer from severe grain coarsening,which has long been a major concern that prevents their wider applications.Here,we proposed an effective strate...When exposed to moderate to high temperatures,nanomaterials typically suffer from severe grain coarsening,which has long been a major concern that prevents their wider applications.Here,we proposed an effective strategy to inhibit grain coarsening by constructing grain boundary(GB)complexions with multiple codoped dopants,which hindered coarsening from both energetic and kinetic perspectives.To demonstrate the feasibility of this strategy,multiple selected dopants were doped into a ZrO_(2)-SiO_(2)nanocrystalline glass ceramic(NCGC)to form GB complexions.The results showed that NCGC was predominantly composed of ZrO_(2)nanocrystallites(NCs)distributed in an amorphous SiO_(2)matrix.Ultrathin layers of GB complexions(~2.5 nm)were formed between adjacent ZrO_(2)NCs,and they were crystalline superstructures with co-segregated dopants.In addition,a small amount of quartz solid solution was formed,and it adhered to the periphery of ZrO_(2)NCs and bridged the adjacent NCs,acting as a“bridging phase”.The GB complexions and the“bridging phase”synergistically enhanced the coarsening resistance of ZrO_(2)NCs up to 1000°C.These findings are important for understanding GB complexions and are expected to provide new insights into the design of nanomaterials with excellent thermodynamic stability.展开更多
According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was establi...According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was established. The numerical simulation of melting process of a regenerative aluminum melting furnace was presented using hybrid programming method of FLUENT UDF and FLUENT scheme based on the heat balance test. Burner effects on melting process of aluminum melting furnaces were investigated by taking optimization regulations into account. The change rules of melting time on influence factors are achieved. Melting time decreases with swirl number, vertical angle of burner, air preheated temperature or natural gas flow; melting time firstly decreases with horizontal angle between burners or air-fuel ratio, then increases; melting time increases with the height of burner.展开更多
Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal part...Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal particle was developed, and both contact force and gravity force were considered in the models. The simulation results were validated by our experiment. Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects. The results show that there exists big difference in the microscopic parameters such as kinetic energy, rotational kinetic energy, deformation, contact force and collision number which leads to the difference of macroscopic parameters. The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results. The flow pattern is similar for the 5-element and 3-intersection representations. The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result. Finally the 3-intersection- element reoresentation is chosen in the simulation due to less comouting time than that of the 5-element renresentation.展开更多
A method was developed for content determination of Na, Mg, A1, Si, P,S, C1, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Nb, Zr, Y, Sr, Rb, Ba, La and Ce etc. covering 26 major, minor, and trace elements in marine sedim...A method was developed for content determination of Na, Mg, A1, Si, P,S, C1, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Nb, Zr, Y, Sr, Rb, Ba, La and Ce etc. covering 26 major, minor, and trace elements in marine sediment samples using fused glass disc by X-ray Fluorescence spectrometry. Calibration was made using marine sediment certified reference materials and the synthetic standard samples prepared by mixing several marine sediments with stream sediment and carbonate standard samples in different proportions. The matrix effect was corrected using theoretical alpha coefficients, experience coefficients and the scattered radiation as the internal standard (for the trace elements). The accuracy of the method was evaluated by analysis of certified reference materials GBW07314, GBW07334 and GSMS6. The results are in good agreement with the certified values of the standards with RSD less than 2.60%, except for Y, Cr, Ga, Ce, La, Nb, Rb, and V with RSD less than 9.0% (n=12).展开更多
The broad implication of the paper is to elucidate the significance of the dynamic heaving motion in the aerodynamic performance of multi-element wings,currently considered as a promising aspect for the improvement of...The broad implication of the paper is to elucidate the significance of the dynamic heaving motion in the aerodynamic performance of multi-element wings,currently considered as a promising aspect for the improvement of the aerodynamic correlation between CFD,wind tunnel and track testing in race car applications.The relationship between the varying aerodynamic forces,the vortex shedding,and the unsteady pressure field of a heaving double-element wing is investigated for a range of mean ride heights,frequencies,and amplitudes,using a two-dimensional(2D)unsteady Reynolds-averaged Navier-Stokes(URANS)approach and an overset mesh method for modelling the moving wing.The analysis of the results shows that at high frequencies,i.e.,k≥5.94 and amplitudes a/c≥0.05 the interaction of the shear vorticity between the two elements results in the generation of cohering leading and trailing edge vortices on the flap,associated to the rapid variation of thrust and downforce enhancement.Both the occurrence and intensity of these vortices are dependent upon the frequency,amplitude,and mean ride height of the heaving wing.The addition of the flap significantly alters the frequency of the shed vortices in the wake and maintains the generation of downforce for longer time in ground proximity.The comparison with the static wing provides evidence that the dynamic motion of a race car wing can be beneficial in terms of performance,or detrimental in terms of aerodynamic correlation.展开更多
In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through poro...In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode,surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally,a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.展开更多
基金This work was supported by the Scientific Research Foundation for High Level Talents of Qingdao Agricultural University,China(665-1120015)the National Program for Quality and Safety Risk Assessment of Agricultural Products of China(GJFP2019011)the National Natural Science Foundation of China(42207017).
文摘Winter jujube(Ziziphus jujuba'Dongzao')is greatly appreciated by consumers for its excellent quality,but brand infringement frequently occurs in the market.Here,we first determined a total of 38 elements in 167 winter jujube samples from the main winter jujube producing areas of China by inductively coupled plasma mass spectrometer(ICP-MS).As a result,16 elements(Mg,K,Mn,Cu,Zn,Mo,Ba,Be,As,Se,Cd,Sb,Ce,Er,Tl,and Pb)exhibited significant differences in samples from different producing areas.Supervised linear discriminant analysis(LDA)and orthogonal projection to latent structures discriminant analysis(OPLS-DA)showed better performance in identifying the origin of samples than unsupervised principal component analysis(PCA).LDA and OPLS-DA had a mean identification accuracy of 87.84 and 94.64%in the testing set,respectively.By using the multilayer perceptron(MLP)and C5.0,the prediction accuracy of the models could reach 96.36 and 91.06%,respectively.Based on the above four chemometric methods,Cd,Tl,Mo and Se were selected as the main variables and principal markers for the origin identification of winter jujube.Overall,this study demonstrates that it is practical and precise to identify the origin of winter jujube through multi-element fingerprint analysis with chemometrics,and may also provide reference for establishing the origin traceability system of other fruits.
文摘For a complex flow about multi-element airfoils a mixed grid method is set up. C-type grids are produced on each element′s body and in their wakes at first, O-type grids are given in the outmost area, and H-type grids are used in middle additional areas. An algebra method is used to produce the initial grids in each area. And the girds are optimized by elliptical differential equation method. Then C-O-H zonal patched grids around multi-element airfoils are produced automatically and efficiently. A time accurate finite-volume integration method is used to solve the compressible laminar and turbulent Navier-Stokes (N-S) equations on the grids. Computational results prove the method to be effective.
文摘A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171166,11972372 and U20A20231)supported by Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd。
文摘Energetic structural materials(ESMs)are a new type of structural materials with bearing and damage characteristics.In this work the microstructure,mechanical properties and energy release characteristics of multi-element Ti-Zr-Ta alloys with good casting performance were studied.The microstructure of the Ti_(x)ZrTa alloys gradually change from BCC+HCP to single BCC structure with the increase of Ti.While the Ti_(2)Zr_(y)Ta alloys was still uniform and single BCC structure with the increase of Zr.The evolution of microstructure and composition then greatly affect the mechanical properties and energy-release characteristics of Ti-Zr-Ta alloys.The synergistic effect of dual phase structure increases the fracture strain of Ti_(x)ZrTa(x=0.2,0.5)with the Ti content decreases,while the fracture strain of Ti_(x)ZrTa(x=2.0,3.0,4.0)gradually increase with the Ti content increases caused by the annihilation of the obstacles for dislocation movement.And as Zr content increases,the fracture strain of Ti_(2)Zr_(y)Ta alloys decrease,then the oxidation reaction rate and fragmentation degree gradually increase.The higher oxidation rate and the lager exposed oxidation area jointly leads the higher releasing energy efficiency of Ti_(x)ZrTa alloys with low Ti content and Ti_(2)Zr_(y)Ta alloys with high Zr content.
基金This work was supported by the State Key Lab of Intense Pulsed Radiation Simulation and Effect Basic Research Foundation(No.SKLIPR1504).
文摘To study the effects of the gamma reflection of multi-element materials,gamma ray transport models of single-element materials,such as iron and lead,and multielement materials,such as polyethylene and ordinary concrete,were established in this study.Relationships among the albedo factors of the gamma photons and energies and average energy of the reflected gamma rays by material type,material thickness,incident gamma energy,and incidence angle of gamma rays were obtained by Monte Carlo simulation.The results show that the albedo factors of single-element and multi-element materials increase rapidly with an increase in the material thickness.When the thickness of the material increases to a certain value,the albedo factors do not increase further but rather tend to the saturation value.The saturation values for the albedo factors of the gamma photons,and energies and the reflection thickness are related not only to the type of material but also to the incident gamma energy and incidence angle of the gamma rays.At a given incident gamma energy,which is between 0.2 and 2.5 MeV,the smaller the effective atomic number of the multi-element material is,the higher the saturation values of the albedo factors are.The larger the incidence angle of the gamma ray is,the greater the saturation value of the gamma albedo factor,saturation reflection thickness,and average saturation energy of the reflected gamma photons are.
文摘The paper is to integrate aerodynamic and aero-acoustic optimizatiom design of high lift devices,especially for two-element airfoils with slat.Aerodynamic analysis on flow field utilizes a high-order,high-resolution spatial differential method for large eddy simulation(LES),which can guarantee accuracy and efficiency.The aeroacoustic analysis for noise level is calculated with Ffowcs Williams-Hawkings(FW-H)integration formula.Fidelity of calculation is verified by standard models.Method of streamline-based Euler simulation(MSES)is used to obtain the aerodynamic characters.Based on the confirmation of numerical methods,detailed research has been conducted for the leading edge slat on multi-element airfoils.Various slot parameter influences on noise are analyzed.The results of the slot optimization parameters can be used in multi-element airfoil design.
基金This work was supported by the Hainan Provincial Natural Science Foundation of China[2018CXTD333,617048]National Natural Science Foundation of China[61762033,61702539]+1 种基金Hainan University Doctor Start Fund Project[kyqd1328]Hainan University Youth Fund Project[qnjj1444].
文摘Traditional distributed denial of service(DDoS)detection methods need a lot of computing resource,and many of them which are based on single element have high missing rate and false alarm rate.In order to solve the problems,this paper proposes a DDoS attack information fusion method based on CNN for multi-element data.Firstly,according to the distribution,concentration and high traffic abruptness of DDoS attacks,this paper defines six features which are respectively obtained from the elements of source IP address,destination IP address,source port,destination port,packet size and the number of IP packets.Then,we propose feature weight calculation algorithm based on principal component analysis to measure the importance of different features in different network environment.The algorithm of weighted multi-element feature fusion proposed in this paper is used to fuse different features,and obtain multi-element fusion feature(MEFF)value.Finally,the DDoS attack information fusion classification model is established by using convolutional neural network and support vector machine respectively based on the MEFF time series.Experimental results show that the information fusion method proposed can effectively fuse multi-element data,reduce the missing rate and total error rate,memory resource consumption,running time,and improve the detection rate.
文摘A factor analysis was applied to soil geochemical data to define anomalies related to buried Pb-Zn mineralization.A favorable main factor with a strong association of the elements Zn,Cu and Pb,related to mineralization,was selected for interpretation.The median+2 MAD(median absolute deviation)method of exploratory data analysis(EDA)and C-A(concentration-area)fractal modeling were then applied to the Mahalanobis distance,as defined by Zn,Cu and Pb from the factor analysis to set the thresholds for defining multi-element anomalies.As a result,the median+2 MAD method more successfully identified the Pb-Zn mineralization than the C-A fractal model.The soil anomaly identified by the median+2 MAD method on the Mahalanobis distances defined by three principal elements(Zn,Cu and Pb)rather than thirteen elements(Co,Zn,Cu,V,Mo,Ni,Cr,Mn,Pb,Ba,Sr,Zr and Ti)was the more favorable reflection of the ore body.The identified soil geochemical anomalies were compared with the in situ economic Pb-Zn ore bodies for validation.The results showed that the median+2 MAD approach is capable of mapping both strong and weak geochemical anomalies related to buried Pb-Zn mineralization,which is therefore useful at the reconnaissance drilling stage.
文摘Multi-element analysis in historical sites is a major issue in archaeological studies;however,this approach is almost unknown among Iranian scholars.Geochemical multi-element analysis of soil is very important to evaluate anthropogenic activities.The aim of this study consists of assessing the potential usefulness of multi-elemental soil analysis,obtained by Analytical Jena atomic absorption spectrophotometer(AAS) and ICP-MS,to recognize ancient anthropogenic features on the territory of Tappe Rivi(North Khorasan,Iran).For that purpose,a total of 80 ancient soil samples were sampled from each soil horizon and cultural layer.The research involved Fe,Al,Cd,Cu,Ni,Co,Cr,Pb,and P which trace element samples were extracted according to the International Standard ISO 11466 and phosphorus samples by Olsen method.Besides,the contamination of the soils was assessed based on enrichment factors(EFs) by using Fe as a reference element.This geochemical/archaeological approach highlights that the content of most elements in the Parthian and Sassanid ages were significantly higher than the contents of the elements in other zones,which shows that by the development of the eras,the content of the elements has also increased.Also,the accumulation of metals in the Rivi site was significantly higher than in the control area.Among the sampled zones,enrichment factor(EF) indicated that the enrichment of Cu and phosphate at the Parthian and Sassanid had the highest content.This result is important because it shows that the amount of metals and human activities are directly related to each other during different ages.
基金Projects(51671217,51604112) supported by the National Natural Science Foundation of ChinaProject(2017JJ3089) supported by the Natural Science Foundation of Hunan Province,China
文摘The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.
基金Supported by the National Natural Science Foundation of China(11172134)the Funding of Jiangsu Innovation Program for Graduate Education(CXZZ110192)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils.The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods,which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries.The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils,and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid.An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes(NS)equations.The simulations of the viscous flows over a RAE2822airfoil or a two-element airfoil are successfully carried out,and the obtained results agree well with the available experimental data.
基金The National Natural Science Foundation of China (No.50478090)
文摘A set of serf-developed apparatus for foundation physical model were utilized to conduct model tests of the multi-element composite foundation with a steel pipe pile and several gravel piles. Some load-bearing characteristics of the multi-element Composite foundation, including the curves of foundation settlement, stresses of piles, pile-soil stress ratio, and load-sharing ratio of piles and soil, were obtained to study its working performances in silty sand soil. The experimental results revealed that the multi-element composite foundation with steel pipe pile and gravel pile contributed more than the gravel pile composite foundation in improving the bearing capacity of the silty fine sand.
基金supported by the Universiti Kebangsaan Malaysia research grant(Grant No.GGP-2020-012)。
文摘This investigation aimed to establish the geographical traceability of Malaysian rice by assessing the elemental composition in paddy soil.Multi-element determination in combination with a chemometric approach was applied to evaluate the elemental concentrations of paddy soil from granaries cultivated with the same rice variety and to assess the relationship between elements in the soil and rice(SAR) system.A total of 29 elements(aluminum,arsenic,barium,bromine,calcium,chlorine,cobalt,chromium,cesium,europium,iron,gallium,hafnium,potassium,lanthanum,lutetium,magnesium,manganese,sodium,rubidium,antimony,scandium,samarium,thorium,titanium,uranium,vanadium,ytterbium and zinc) were successfully determined in paddy soil from Kedah,Selangor and Langkawi by neutron activation analysis.A significant difference(P < 0.05) between 18 elements in the soil samples was obtained.The chemometric approaches of principal component and linear discriminant analyses demonstrated clear discrimination and highly corrected classification(100%) of the soil samples.A high classification(98.1%) was also achieved by assessing 10 elements(aluminum,arsenic,bromine,chlorine,potassium,magnesium,manganese,sodium,rubidium and zinc),which similarly applied to rice geographical origin determination.Similar elements in SAR were also observed for differences in the pattern of correlation and bioaccumulation factor between the granaries.Furthermore,the generalized Procrustes analysis showed a 98% consensus between SAR and clear differences between the studied regions.The canonical correlation analysis demonstrated a significant correlation between the chemical profile of SAR(r~2 = 0.88,P < 0.001).Therefore,the current work model provides a reliable assessment to establish rice provenance.
基金supported by the National Natural Science Foundation of China(51972223,52202279)the Natural Science Foundation of Tianjin(20JCYBJC01550)+2 种基金the National Industry-Education Integration Platform of Energy Storagethe Fundamental Research Funds for the Central Universitiesthe Haihe Laboratory of Sustainable Chemical Transformations。
文摘Electrocatalytic nitrate reduction reaction is considered as a promising and sustainable method for ammonia synthesis.However,the selectivity and yield rate of ammonia are limited by the competitive hydrogen evolution reaction and the complex eight-electron transfer process.Herein,we developed a(FeCoNiCu)Ox/CeO_(2)polymetallic oxide electrocatalyst for effective nitrate reduction to ammonia.The synergistic effects among the multiple elements in the electrocatalyst were clearly elucidated by comprehensive experiments.Specifically,Cu acted as the active site for reducing nitrate to nitrite,and Co facilitated the subsequent reduction of nitrite to ammonia,while Fe and Ni promoted water dissociation to provide protons.Furthermore,the incorporation of CeO_(2)increased the active surface area of(FeCoNiCu)Ox,resulting in an improved ammonia yield rate to meet industrial demands.Consequently,the(FeCoNiCu)Ox/CeO_(2)electrocatalyst achieved an ammonia current density of 382 mA cm^(-2)and a high ammonia yield rate of 30.3 mg h^(-1)cm^(-2)with a long-term stability.This work offers valuable insights for the future design of highly efficient multi-element electrocatalysts.
基金the financial support of the National Natural Science Foundation of China(No.52102084)the Natural Science Foundation of Hunan Province(No.2022JJ30718)Kathryn Grandfield acknowledges funding from the Natural Sciences and Engineering Research Council of Canada(NSERC)discovery grant and research chair programs.
文摘When exposed to moderate to high temperatures,nanomaterials typically suffer from severe grain coarsening,which has long been a major concern that prevents their wider applications.Here,we proposed an effective strategy to inhibit grain coarsening by constructing grain boundary(GB)complexions with multiple codoped dopants,which hindered coarsening from both energetic and kinetic perspectives.To demonstrate the feasibility of this strategy,multiple selected dopants were doped into a ZrO_(2)-SiO_(2)nanocrystalline glass ceramic(NCGC)to form GB complexions.The results showed that NCGC was predominantly composed of ZrO_(2)nanocrystallites(NCs)distributed in an amorphous SiO_(2)matrix.Ultrathin layers of GB complexions(~2.5 nm)were formed between adjacent ZrO_(2)NCs,and they were crystalline superstructures with co-segregated dopants.In addition,a small amount of quartz solid solution was formed,and it adhered to the periphery of ZrO_(2)NCs and bridged the adjacent NCs,acting as a“bridging phase”.The GB complexions and the“bridging phase”synergistically enhanced the coarsening resistance of ZrO_(2)NCs up to 1000°C.These findings are important for understanding GB complexions and are expected to provide new insights into the design of nanomaterials with excellent thermodynamic stability.
基金Project(2009bsxt022)supported by the Dissertation Innovation Foundation of Central South University,ChinaProject(07JJ4016)supported by Natural Science Foundation of Hunan Province,ChinaProject(U0937604)supported by the National Natural Science Foundation of China
文摘According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was established. The numerical simulation of melting process of a regenerative aluminum melting furnace was presented using hybrid programming method of FLUENT UDF and FLUENT scheme based on the heat balance test. Burner effects on melting process of aluminum melting furnaces were investigated by taking optimization regulations into account. The change rules of melting time on influence factors are achieved. Melting time decreases with swirl number, vertical angle of burner, air preheated temperature or natural gas flow; melting time firstly decreases with horizontal angle between burners or air-fuel ratio, then increases; melting time increases with the height of burner.
基金Supported by the Major State Basic Research Development Program of China (2011CB201505), the National Natural Science Foundation of China (50976025) and the Key Proj ect.of Science and Technology of Henan Province (12B610012).
文摘Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal particle was developed, and both contact force and gravity force were considered in the models. The simulation results were validated by our experiment. Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects. The results show that there exists big difference in the microscopic parameters such as kinetic energy, rotational kinetic energy, deformation, contact force and collision number which leads to the difference of macroscopic parameters. The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results. The flow pattern is similar for the 5-element and 3-intersection representations. The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result. Finally the 3-intersection- element reoresentation is chosen in the simulation due to less comouting time than that of the 5-element renresentation.
基金Supported by China Ministry of Science and Technology (2000DEB20081)China Ocean Mineral Resources R&D Association (COMRA) (No.DY105-05-01-05)+1 种基金China Ministry of Education(No.205089)China National Natural Science Foundation (No.40076015)
文摘A method was developed for content determination of Na, Mg, A1, Si, P,S, C1, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Nb, Zr, Y, Sr, Rb, Ba, La and Ce etc. covering 26 major, minor, and trace elements in marine sediment samples using fused glass disc by X-ray Fluorescence spectrometry. Calibration was made using marine sediment certified reference materials and the synthetic standard samples prepared by mixing several marine sediments with stream sediment and carbonate standard samples in different proportions. The matrix effect was corrected using theoretical alpha coefficients, experience coefficients and the scattered radiation as the internal standard (for the trace elements). The accuracy of the method was evaluated by analysis of certified reference materials GBW07314, GBW07334 and GSMS6. The results are in good agreement with the certified values of the standards with RSD less than 2.60%, except for Y, Cr, Ga, Ce, La, Nb, Rb, and V with RSD less than 9.0% (n=12).
文摘The broad implication of the paper is to elucidate the significance of the dynamic heaving motion in the aerodynamic performance of multi-element wings,currently considered as a promising aspect for the improvement of the aerodynamic correlation between CFD,wind tunnel and track testing in race car applications.The relationship between the varying aerodynamic forces,the vortex shedding,and the unsteady pressure field of a heaving double-element wing is investigated for a range of mean ride heights,frequencies,and amplitudes,using a two-dimensional(2D)unsteady Reynolds-averaged Navier-Stokes(URANS)approach and an overset mesh method for modelling the moving wing.The analysis of the results shows that at high frequencies,i.e.,k≥5.94 and amplitudes a/c≥0.05 the interaction of the shear vorticity between the two elements results in the generation of cohering leading and trailing edge vortices on the flap,associated to the rapid variation of thrust and downforce enhancement.Both the occurrence and intensity of these vortices are dependent upon the frequency,amplitude,and mean ride height of the heaving wing.The addition of the flap significantly alters the frequency of the shed vortices in the wake and maintains the generation of downforce for longer time in ground proximity.The comparison with the static wing provides evidence that the dynamic motion of a race car wing can be beneficial in terms of performance,or detrimental in terms of aerodynamic correlation.
基金Projects 50534090 and 50674090 supported by the National Natural Science Foundation of China2005CB221503 by the National Key Basic ResearchDevelopment Program (973 Program)
文摘In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode,surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally,a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.