The permeability of coal of middle to high ranks were tested using He,CH 4 and H 2O in single phase medium and using CH 4 and H 2O in double phase medium. The relation between adsorption and permeability of those medi...The permeability of coal of middle to high ranks were tested using He,CH 4 and H 2O in single phase medium and using CH 4 and H 2O in double phase medium. The relation between adsorption and permeability of those media was discussed, and the seepage flow characteristics of methane-water medium in coals were analyzed. The result shows that the coalbed methane resource of high-rank coal reservoirs in China is still recoverable.展开更多
The fascia and the fascial space can help provide a better understanding of the body. An intervaginal space injection (ISI) provides unique advantages that require further investigation. An upper limb model includin...The fascia and the fascial space can help provide a better understanding of the body. An intervaginal space injection (ISI) provides unique advantages that require further investigation. An upper limb model including physiological conditions and the tumor process was chosen to determine the flow behavior of liquid metal after ISI. In normal rats, after the injection of liquid metal into the intervaginal space comprising tendons, vessels, and nerves, magnetic resonance imaging and an anatomy experiment indicated that the liquid metal wrapped around the fascial space and finally reached the fingertip downstream and the armpit upstream in addition to the neurovascular bundle without vessels or lymph nodes. Using environmental scanning electron microscopy (ESEM) images, we discovered that the liquid metal was wrapped around the fibers of the fascia and moved forward in microscale or nanoscale areas. These data confirmed a fascia-based pathway. In tumors, the liquid metal moved to the tumor capsule through the damaged spot, where cancer cells destroy the integrity of the fascia between the normal cells and cancer cells. The liquid metal partly wrapped around the tumor and separated the tumor from the surrounding normal muscle. The ESEM images showed that fibers of the fascia penetrated the tumor, thus forming a network through which the liquid metal penetrated the tumor. Our study illustrated the physiological and pathological flow behavior of liquid metal in the upper limb after ISI and demonstrated a nonvascular pathway in the fascia. ISI may be useful for clinical treatment in the fascial pathway.展开更多
基金National Natural Science Foundation of China(4 0 2 42 0 12 ,5 0 13 40 40 )
文摘The permeability of coal of middle to high ranks were tested using He,CH 4 and H 2O in single phase medium and using CH 4 and H 2O in double phase medium. The relation between adsorption and permeability of those media was discussed, and the seepage flow characteristics of methane-water medium in coals were analyzed. The result shows that the coalbed methane resource of high-rank coal reservoirs in China is still recoverable.
基金We are sincerely thankful to Technical Institute of Physics and Chemistry at the Chinese Academy of Sciences for providing the liquid metal. This work was supported by the National Natural Science Foundation of China (NSFC) (No. 31470905).
文摘The fascia and the fascial space can help provide a better understanding of the body. An intervaginal space injection (ISI) provides unique advantages that require further investigation. An upper limb model including physiological conditions and the tumor process was chosen to determine the flow behavior of liquid metal after ISI. In normal rats, after the injection of liquid metal into the intervaginal space comprising tendons, vessels, and nerves, magnetic resonance imaging and an anatomy experiment indicated that the liquid metal wrapped around the fascial space and finally reached the fingertip downstream and the armpit upstream in addition to the neurovascular bundle without vessels or lymph nodes. Using environmental scanning electron microscopy (ESEM) images, we discovered that the liquid metal was wrapped around the fibers of the fascia and moved forward in microscale or nanoscale areas. These data confirmed a fascia-based pathway. In tumors, the liquid metal moved to the tumor capsule through the damaged spot, where cancer cells destroy the integrity of the fascia between the normal cells and cancer cells. The liquid metal partly wrapped around the tumor and separated the tumor from the surrounding normal muscle. The ESEM images showed that fibers of the fascia penetrated the tumor, thus forming a network through which the liquid metal penetrated the tumor. Our study illustrated the physiological and pathological flow behavior of liquid metal in the upper limb after ISI and demonstrated a nonvascular pathway in the fascia. ISI may be useful for clinical treatment in the fascial pathway.