期刊文献+
共找到14,737篇文章
< 1 2 250 >
每页显示 20 50 100
Linear paired electrolysis of furfural to furoic acid at both anode and cathode in a multiple redox mediated system
1
作者 Xinxin Li Linchuan Cong +4 位作者 Haibo Lin Fangbing Liu Xiangxue Fu Hai-Chao Xu Nan Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期104-113,共10页
Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we r... Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we report a multiple redox-mediated linear paired electrolysis system,combining the hydrogen peroxide mediated cathode process with the I2 mediated anode process,and realize the conversion of furfural to furoic acid in both side of the dividedflow cell simultaneously.By reasonably controlling the cathode potential,the undesired water splitting reaction and furfural reduction side reactions are avoided.Under the galvanostatic electrolysis,the two-mediated electrode processes have good compatibility,which reduce the energy consumption by about 22%while improving the electronic efficiency by about 125%.This system provides a green electrochemical synthesis route with commercial prospects. 展开更多
关键词 multiple redox mediated system linear paired electrolysis FURFURAL Furoic acid
下载PDF
Country-based modelling of COVID-19 case fatality rate:A multiple regression analysis
2
作者 Soodeh Sagheb Ali Gholamrezanezhad +2 位作者 Elizabeth Pavlovic Mohsen Karami Mina Fakhrzadegan 《World Journal of Virology》 2024年第1期84-94,共11页
BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale c... BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19. 展开更多
关键词 COVID-19 SARS-CoV-2 Case fatality rate Predictive model multiple regression
下载PDF
Enterprise Value Valuation-BYD as an Example Based on SWOT Model and Multiple Regression Model
3
作者 YANG Siqi 《Management Studies》 2024年第4期197-217,共21页
BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one han... BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one hand,this paper makes a qualitative analysis of BYD,using SWOT model to study the internal capability and external environment of BYD.On the other hand,the multiple regression model is used for quantitative analysis of BYD’s enterprise value,and the model is established based on three factors:enterprise fundamentals,investor behavior and psychology,and macroeconomic policy uncertainty,and the stepwise regression is carried out.The results show that the increase of institutional investors’shareholding ratio,the increase of investor sentiment index,and the increase of M2 growth rate will increase the overall enterprise value,while the increase of economic policy uncertainty will decrease the enterprise value. 展开更多
关键词 BYD enterprise value multiple regression analysis investor behavior and psychology macroeconomic policy uncertainty
下载PDF
Integrating Multiple Linear Regression and Infectious Disease Models for Predicting Information Dissemination in Social Networks
4
作者 Junchao Dong Tinghui Huang +1 位作者 Liang Min Wenyan Wang 《Journal of Electronic Research and Application》 2023年第2期20-27,共8页
Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model int... Social network is the mainstream medium of current information dissemination,and it is particularly important to accurately predict its propagation law.In this paper,we introduce a social network propagation model integrating multiple linear regression and infectious disease model.Firstly,we proposed the features that affect social network communication from three dimensions.Then,we predicted the node influence via multiple linear regression.Lastly,we used the node influence as the state transition of the infectious disease model to predict the trend of information dissemination in social networks.The experimental results on a real social network dataset showed that the prediction results of the model are consistent with the actual information dissemination trends. 展开更多
关键词 Social networks Epidemic model linear regression model
下载PDF
Constitutive equations of 1060 pure aluminum based on modified double multiple nonlinear regression model 被引量:6
5
作者 李攀 李付国 +2 位作者 曹俊 马新凯 李景辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1079-1095,共17页
In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperature... In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series &parallel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision. 展开更多
关键词 1060 pure aluminum modified DMNR(double multiple nonlinear regression) constitutive equation flow behaviour multilevel series rules multilevel parallel rules multilevel series & parallel rules
下载PDF
Multiple regression analysis of risk factors related to radiation pneumonitis 被引量:1
6
作者 Ling-Ling Shi Jiang-Hua Yang Hong-Fa Yao 《World Journal of Clinical Cases》 SCIE 2023年第5期1040-1048,共9页
BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression an... BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression analysis on the influencing factors of radiation pneumonitis.METHODS Records of 234 patients receiving chest radiotherapy in Huzhou Central Hospital(Huzhou,Zhejiang Province,China)from January 2018 to February 2021,and the patients were divided into either a study group or a control group based on the presence of radiation pneumonitis or not.Among them,93 patients with radiation pneumonitis were included in the study group and 141 without radiation pneumonitis were included in the control group.General characteristics,and radiation and imaging examination data of the two groups were collected and compared.Due to the statistical significance observed,multiple regression analysis was performed on age,tumor type,chemotherapy history,forced vital capacity(FVC),forced expiratory volume in the first second(FEV1),carbon monoxide diffusion volume(DLCO),FEV1/FVC ratio,planned target area(PTV),mean lung dose(MLD),total number of radiation fields,percentage of lung tissue in total lung volume(vdose),probability of normal tissue complications(NTCP),and other factors.RESULTS The proportions of patients aged≥60 years and those with the diagnosis of lung cancer and a history of chemotherapy in the study group were higher than those in the control group(P<0.05);FEV1,DLCO,and FEV1/FVC ratio in the study group were lower than those in the control group(P<0.05),while PTV,MLD,total field number,vdose,and NTCP were higher than in the control group(P<0.05).Logistic regression analysis showed that age,lung cancer diagnosis,chemotherapy history,FEV1,FEV1/FVC ratio,PTV,MLD,total number of radiation fields,vdose,and NTCP were risk factors for radiation pneumonitis.CONCLUSION We have identified patient age,type of lung cancer,history of chemotherapy,lung function,and radiotherapy parameters as risk factors for radiation pneumonitis.Comprehensive evaluation and examination should be carried out before radiotherapy to effectively prevent radiation pneumonitis. 展开更多
关键词 Radiation pneumonitis Influencing factors RADIOTHERAPY multiple regression analysis
下载PDF
Combined model based on optimized multi-variable grey model and multiple linear regression 被引量:11
7
作者 Pingping Xiong Yaoguo Dang +1 位作者 Xianghua wu Xuemei Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期615-620,共6页
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin... The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction. 展开更多
关键词 multi-variable grey model (MGM(1 m)) backgroundvalue OPTIMIZATION multiple linear regression combined predic-tion model.
下载PDF
Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network(ANN) and multiple linear regressions(MLR) 被引量:8
8
作者 Ali Mohammadi Torkashvand Abbas Ahmadi Niloofar Layegh Nikravesh 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1634-1644,共11页
Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s... Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration. 展开更多
关键词 artificial neural network FIRMNESS FRUIT KIWI multiple linear regression NUTRIENT
下载PDF
A study of the mixed layer of the South China Sea based on the multiple linear regression 被引量:7
9
作者 DUAN Rui YANG Kunde +1 位作者 MA Yuanliang HU Tao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期19-31,共13页
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ... Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid. 展开更多
关键词 mixed layer multiple linear regression South China Sea vertical mixing model
下载PDF
Statistical analysis of nitrogen use efficiency in Northeast China using multiple linear regression and Random Forest 被引量:2
10
作者 LIU Ying-xia Gerard B.M.HEUVELINK +4 位作者 Zhanguo BAI HE Ping JIANG Rong HUANG Shaohui XU Xin-peng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第12期3637-3657,共21页
Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the applica... Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability. 展开更多
关键词 partial factor productivity of N partial nutrient balance of N stepwise multiple linear regression Random Forest county scale Northeast China
下载PDF
Multiple Regression and Big Data Analysis for Predictive Emission Monitoring Systems
11
作者 Zinovi Krougly Vladimir Krougly Serge Bays 《Applied Mathematics》 2023年第5期386-410,共25页
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple... Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant. 展开更多
关键词 Matrix Algebra in multiple linear regression Numerical Integration High Precision Computation Applications in Predictive Emission Monitoring Systems
下载PDF
Prediction of mode I fracture toughness of rock using linear multiple regression and gene expression programming 被引量:1
12
作者 Bijan Afrasiabian Mosleh Eftekhari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1421-1432,共12页
Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to p... Prediction of mode I fracture toughness(KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression(LMR) and gene expression programming(GEP)methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and elastic modulus(E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets.Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination(R2),root mean square error(RMSE), and mean absolute error(MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156,respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2value and lower errors. 展开更多
关键词 Mode I fracture Toughness Critical stress intensity factor linear multiple regression(LMR) Gene expression programming(GEP)
下载PDF
Application of Multiple Linear Regression and Manova to Evaluate Health Impacts Due to Changing River Water Quality 被引量:2
13
作者 Sudevi Basu K. S. Lokesh 《Applied Mathematics》 2014年第5期799-807,共9页
Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated wa... Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts. 展开更多
关键词 multiple linear regression Model MANOVA t-Statistics BOD COD TDS TC FC
下载PDF
农村电商流通效率优化赋能甘肃乡村振兴——基于DEA-Multiple Regression模型 被引量:4
14
作者 余佳豪 《物流科技》 2023年第3期121-125,共5页
产业兴旺是乡村振兴的重中之重,也是解决众多农村问题的前提,而农产品流通效率水平是农村相关产业发展的关键。在乡村振兴视角下,以2021年甘肃省面板数据为样本,基于DEA模型分析得出当前甘肃农产品流通效率整体水平较低,其他市区可以吸... 产业兴旺是乡村振兴的重中之重,也是解决众多农村问题的前提,而农产品流通效率水平是农村相关产业发展的关键。在乡村振兴视角下,以2021年甘肃省面板数据为样本,基于DEA模型分析得出当前甘肃农产品流通效率整体水平较低,其他市区可以吸取兰州、陇南等农产品流通水平较高地区的经验,与电商融合发展来提升农产品流通效率。在基于DEA计量分析的基础上,依据农村电商产品流通过程提取变量指标,通过Multiple Regression模型分析得出以下结论:劳动投入、资金投入、农村电商组织化程度、新型基础设施建设、营销能力、物流运输方式、物流运输技术、物流站点均是甘肃农村电商产品流通效率的制约因素,以此为根据得出相关结论和建议。 展开更多
关键词 产业兴旺 农产品流通效率 农村电商 DEA 多元回归
下载PDF
Hole Cleaning Prediction in Foam Drilling Using Artificial Neural Network and Multiple Linear Regression 被引量:3
15
作者 Reza Rooki Faramarz Doulati Ardejani Ali Moradzadeh 《Geomaterials》 2014年第1期47-53,共7页
Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttin... Foam drilling is increasingly used to develop low pressure reservoirs or highly depleted mature reservoirs because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore geometry, pumping rate, drilling fluid rheology and density and maximum drilling rate is very important for optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. This model is applicable for various borehole conditions using some critical parameters associated with foam velocity, foam quality, hole geometry, subsurface condition (pressure and temperature) and pipe rotation. The average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic model was done. The AAPE values for all datasets in this study were 3.2%, 8.5% and 10.3% for ANN model, MLR model and mechanistic model respectively. The results show high ability of ANN in prediction with respect to statistical methods. 展开更多
关键词 Foam DRILLING HOLE CLEANING Artificial NEURAL Network multiple linear regression
下载PDF
A fault recognition method based on clustering linear regression
16
作者 陈雷 SHI Jiaqi ZHANG Ting 《High Technology Letters》 EI CAS 2023年第4期406-415,共10页
Aiming at the problems of low accuracy,long time consumption,and failure to obtain quantita-tive fault identification results of existing automatic fault identification technic,a fault recognition method based on clus... Aiming at the problems of low accuracy,long time consumption,and failure to obtain quantita-tive fault identification results of existing automatic fault identification technic,a fault recognition method based on clustering linear regression is proposed.Firstly,Hough transform is used to detect the line segment of the enhanced image obtained by the coherence cube algorithm.Secondly,the endpoint of the line segment detected by Hough transform is taken as the key point,and the adaptive clustering linear regression algorithm is used to cluster the key points adaptively according to the lin-ear relationship between them.Finally,a fault is generated from each category of key points based on least squares curve fitting method to realize fault identification.To verify the feasibility and pro-gressiveness of the proposed method,it is compared with the traditional method and the latest meth-od on the actual seismic data through experiments,and the effectiveness of the proposed method is verified by the experimental results on the actual seismic data. 展开更多
关键词 fault recognition CLUSTERING linear regression curve fitting seismic interpreta-tion
下载PDF
Tricube Weighted Linear Regression and Interquartile for Cloud Infrastructural Resource Optimization
17
作者 Neema George B.K.Anoop Vinodh P.Vijayan 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2281-2297,共17页
Cloud infrastructural resource optimization is the process of precisely selecting the allocating the correct resources either to a workload or application.When workload execution,accuracy,and cost are accurately stabi... Cloud infrastructural resource optimization is the process of precisely selecting the allocating the correct resources either to a workload or application.When workload execution,accuracy,and cost are accurately stabilized in opposition to the best possible framework in real-time,efficiency is attained.In addition,every workload or application required for the framework is characteristic and these essentials change over time.But,the existing method was failed to ensure the high Quality of Service(QoS).In order to address this issue,a Tricube Weighted Linear Regression-based Inter Quartile(TWLR-IQ)for Cloud Infrastructural Resource Optimization is introduced.A Tricube Weighted Linear Regression is presented in the proposed method to estimate the resources(i.e.,CPU,RAM,and network bandwidth utilization)based on the usage history in each cloud server.Then,Inter Quartile Range is applied to efficiently predict the overload hosts for ensuring a smooth migration.Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics.The results clearly showed that the proposed method can reduce the energy consumption and provide a high level of commitment with ensuring the minimum number of Virtual Machine(VM)Migrations as compared to the state-of-the-art methods. 展开更多
关键词 Cloud infrastructure tricube weighted linear regression inter quartile CPU RAM network bandwidth utilization
下载PDF
EMPIRICAL BAYES ESTIMATION FOR ESTIMABLE FUNCTION OF REGRESSION COEFFICIENT IN A MULTIPLE LINEAR REGRESSION MODEL 被引量:1
18
作者 韦来生 《Acta Mathematica Scientia》 SCIE CSCD 1996年第S1期22-33,共12页
In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n... In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y. 展开更多
关键词 linear regression model estimable function empirical Bayes estimation convergence rates
下载PDF
Prediction of Link Failure in MANET-IoT Using Fuzzy Linear Regression
19
作者 R.Mahalakshmi V.Prasanna Srinivasan +1 位作者 S.Aghalya D.Muthukumaran 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1627-1637,共11页
A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes ... A Mobile Ad-hoc NETwork(MANET)contains numerous mobile nodes,and it forms a structure-less network associated with wireless links.But,the node movement is the key feature of MANETs;hence,the quick action of the nodes guides a link failure.This link failure creates more data packet drops that can cause a long time delay.As a result,measuring accurate link failure time is the key factor in the MANET.This paper presents a Fuzzy Linear Regression Method to measure Link Failure(FLRLF)and provide an optimal route in the MANET-Internet of Things(IoT).This work aims to predict link failure and improve routing efficiency in MANET.The Fuzzy Linear Regression Method(FLRM)measures the long lifespan link based on the link failure.The mobile node group is built by the Received Signal Strength(RSS).The Hill Climbing(HC)method selects the Group Leader(GL)based on node mobility,node degree and node energy.Additionally,it uses a Data Gathering node forward the infor-mation from GL to the sink node through multiple GL.The GL is identified by linking lifespan and energy using the Particle Swarm Optimization(PSO)algo-rithm.The simulation results demonstrate that the FLRLF approach increases the GL lifespan and minimizes the link failure time in the MANET. 展开更多
关键词 Mobile ad-hoc network fuzzy linear regression method link failure detection particle swarm optimization hill climbing
下载PDF
Development of a Quantitative Prediction Support System Using the Linear Regression Method
20
作者 Jeremie Ndikumagenge Vercus Ntirandekura 《Journal of Applied Mathematics and Physics》 2023年第2期421-427,共7页
The development of prediction supports is a critical step in information systems engineering in this era defined by the knowledge economy, the hub of which is big data. Currently, the lack of a predictive model, wheth... The development of prediction supports is a critical step in information systems engineering in this era defined by the knowledge economy, the hub of which is big data. Currently, the lack of a predictive model, whether qualitative or quantitative, depending on a company’s areas of intervention can handicap or weaken its competitive capacities, endangering its survival. In terms of quantitative prediction, depending on the efficacy criteria, a variety of methods and/or tools are available. The multiple linear regression method is one of the methods used for this purpose. A linear regression model is a regression model of an explained variable on one or more explanatory variables in which the function that links the explanatory variables to the explained variable has linear parameters. The purpose of this work is to demonstrate how to use multiple linear regressions, which is one aspect of decisional mathematics. The use of multiple linear regressions on random data, which can be replaced by real data collected by or from organizations, provides decision makers with reliable data knowledge. As a result, machine learning methods can provide decision makers with relevant and trustworthy data. The main goal of this article is therefore to define the objective function on which the influencing factors for its optimization will be defined using the linear regression method. 展开更多
关键词 PREDICTION linear regression Machine Learning Least Squares Method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部