The application of n-alkane as markers to estimate herbage intake, apparent digestibility and species composition of diet consumed by grazing sheep was studied. Six local Mongolian sheep were used to determine dry mat...The application of n-alkane as markers to estimate herbage intake, apparent digestibility and species composition of diet consumed by grazing sheep was studied. Six local Mongolian sheep were used to determine dry matter (DM) intake, apparent DM digestibility and species composition of diet during summer, autumn and winter. Animals were orally dosed twice daily with n-alkane gelatin capsules containing 60 mg C32-alkane as an external marker. Diet composition was estimated by comparing the odd-chain n-alkanes pattern profile (C27-C31) of the consumed plant species with the n-alkanes fecal concentrations of grazing animals, using a non-negative least squares algorithm called EATWHAT software package. The alkane pair C32:C33 and C33 alkane were used to estimate DM intake and diet apparent DM digestibility, respectively. The results showed that daily dry matter intake of the sheep were 1.77, 1.61 and 1.18 kg d-1 in summer, autumn and winter, respectively. Apparent DM digestibility, crude protein (CP), metabolizable energy (ME) and neutral detergent fiber (NDF) intake of diet consumed by sheep decreased significantly (P〈0.01) from summer to winter, with no evident changes in ADF and ADL intake. Diet composition indicated Artemisia frigida Willd was the most dominant diet component, contributed 79.68, 68.12 and 86.26% of sheep's diets in summer, autumn and winter, respectively. Cleistogenes songorica Ohwi and Convolvulus arnmannii Desr were the important components of the diet. Although Stipa breviflora Griseb is one of the main plant species in the study area, the sheep rarely choosed it. The study indicated that CP and ME in diet consumed by sheep were deficient in winter. Therefore, appropriate supplementation strategies should be indispensable during this period.展开更多
n-Alkanes are widely used in paleoenvironmental reconstructions.However,our understanding of changes in the distribution of n-alkanes with climatic and environmental factors remains unclear in arid/semi-arid regions.W...n-Alkanes are widely used in paleoenvironmental reconstructions.However,our understanding of changes in the distribution of n-alkanes with climatic and environmental factors remains unclear in arid/semi-arid regions.We sampled 26 surface sediments from three climatic zones across the southwestern Tibetan Plateau to evaluate the sensitivity of chain length distributions of n-alkanes to climatic and environmental parameters.Our observations demonstrate that average chain length(ACL),proportion of aquatic macrophyte(Paq),carbon preference index(CPI)and ratio of the contents of nC_(27)and nC_(31)(nC_(27)/nC_(31))are all sensitive to hydroclimatic conditions.In contrast to commonly-adopted assumptions,the correlations between these indices and hydrological parameters are not always good,which indicates that the interpretation of n-alkane indices is special on the southwestern Tibetan Plateau.These might be related to the vegetation characteristics and seasonality of biological activity,and need to be considered in paleoclimatic reconstruction.The impact of seasonal precipitation on n-alkanes indices was also evaluated.展开更多
Particulate samples were collected from the Changjiang river system during a flood period, in May 1997, and POC, stable isotope and lipids associated with particles were examined. Results showed the decrease (0.84% ...Particulate samples were collected from the Changjiang river system during a flood period, in May 1997, and POC, stable isotope and lipids associated with particles were examined. Results showed the decrease (0.84% ~ 1.88%) of organic carbon content from the upper reaches to the estuary.δ^13 values of particulate organic carbon was in the range of -24.9×10^-3 to -26.6×10^-3, which were close to the isotopic signature of continental C3 vegetation. Total particulate n-alkanes concentrations varied from 1.4 to 10.1μg/dm^3,or from 23.7 to 107μg/g of total suspended matter. Fatty acids were present in all the samples, from 1.4 to 5.4μg/dm^3, with saturated and unsaturated straight-chain and branched compounds in the carbon number range from C12 to C30. Both δ^13 and the ratio of carbon content to nitrogen content indicate the predominance of terrestrial inputs (soil organic matter) among the particles. The biomarker approach has been used to identify the relative portion of terrigenous and autochthonous fraction in the particulate samples. The distribution of fatty acids suggests a striking phytoplanktonic and microbial signal in most particle samples. The terrestrial alkanes are used to estimate the contribution of terrestrial inputs along the mainstream.展开更多
The records of high-resolution terrestrial biological markers (biomarkers) from Core B2-9 from the northern Bering Sea Slope over the last 9.6 ka BP were presented in the study. Variations in input of terrestrial lo...The records of high-resolution terrestrial biological markers (biomarkers) from Core B2-9 from the northern Bering Sea Slope over the last 9.6 ka BP were presented in the study. Variations in input of terrestrial long-chain n-alkanes (referred to as n-alkanes) and vegetation structure in their source regions were investigated. The results show that the nCz7 is the main carbon peak and has the greatest contribution rate of the total n-alkane content; this might be related to the abundance of woody plants and their spatial distribution in the source region, nC23 is another n-alkane having a relatively high content; this was mainly derived from submerged plants widespread along the coastal areas in the northern hemisphere. Total n-alkane content dropped quickly at ca. 7.8 ka BP, ca. 6.7 ka BP and ca. 5.4 ka BP, and was followed by four relatively stable stages mostly controlled by sea-level rise, climate change and vegetation distribution in the source region. Variation in carbon preference index (CPI) indicates that the n-alkanes primarily originated from higher land plants, and the average chain length (ACL) and nCa1/nC27 ratio reveal the relatively stable presence of woody/herbaceous plants during the Holocene, and dominate woody plants in most of the time. Simultaneous variation in total n-alkane content, nC27 content and its contribution, CPI, ACL and nC31/nC27 ratio over several short periods suggest that the growth rate of the woody plant n-alkane contribution was lower than that of herbaceous plants and fossil n-alkanes under the particular climatic conditions of the source region.展开更多
In our previous paper we extended the Tao and Mason equation of state (TM EOS) to refrigerant fluids, using the speed of sound data. This is a continuation for evaluating TM EOS in predicting PVT properties of heavy n...In our previous paper we extended the Tao and Mason equation of state (TM EOS) to refrigerant fluids, using the speed of sound data. This is a continuation for evaluating TM EOS in predicting PVT properties of heavy n-alkanes. Liquid density of long-chain n-alkane systems from C 9 to C 20 have been calculated using an analytical equation of state based on the statistical-mechanical perturbation theory. The second virial coefficients of these n-alkanes are scarce and there is no accurate potential energy function for their theoretical calculation. In this work the second virial coefficients are calculated using a corresponding state correlation based on surface tension and liquid density at the freezing point. The deviation of calculated densities of these alkanes is within 0.5% from experimental data. The densities of n-alkanes obtained from the TM EOS are compared with those calculated from Ihm-Song-Mason equation of state and the corresponding-states liquid densities (COSTALD). Our results are in favor of the preference of the TM EOS over other two equations of state.展开更多
Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences...Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences of luminous intensity and concentration of molecular chlorine on the rate of polychlorination are demonstrated by the model. If the luminous intensity is adequate, the polychlorination rate of n-alkane is only controlled by the flow rate of molecular chlorine in a wide range of temperature, and the changes of temperature and luminous intensity have less effect on the reaction rate. In addition, the predictions of chlorine content of polychlorinated n-alkane calculated with the model agree very well with experimental results.展开更多
Stable carbon isotopic compositions of n-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain n-alkanes in ...Stable carbon isotopic compositions of n-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain n-alkanes in surface sediments are predominantly long-chain C27, C29, and C31 types, with obvious odd carbon predominance. The δ13 C values of long-chain n-C27, n-C29, and n-C31 alkanes are-30.8% ± 0.5‰,-31.9% ± 0.6‰, and-32.1% ± 1.0‰, respectively, within the range of n-alkanes of C3 terrestrial higher plants. This suggests that sedimentary n-alkanes are derived mainly from terrestrial higher plants. Compound-specific carbon isotopic analysis of long-chain n-alkanes indicates that C3 terrestrial higher plants predominate(64%–79%), with angiosperms being the main contributors. The n-alkane δ13 C values indicate that mid-chain n-alkanes in sediments are derived mainly from aquatic emergent macrophytes, with significant petroleum pollution and bacterial degradation sources for short-chain n-alkanes.展开更多
This paper reports different concentration patterns of n-alkanes distribution in the sedi- ments from the Chukchi Sea, the Bering Sea in the Arctic. Factor statistical analysis method is used for studying the source o...This paper reports different concentration patterns of n-alkanes distribution in the sedi- ments from the Chukchi Sea, the Bering Sea in the Arctic. Factor statistical analysis method is used for studying the source of n-alkanes and paleoenvironment. The result shows that n-alkanes is in the range of nC15-nC33 and n-alkane distribution patterns are characterized by two modes. The first mode belongs to the higher molecular with MH being nC25-nC27, CPI > 1 and with remarkable odd-even dominance. They are of terrigenous plant origin. The second one belongs to lower carbon range with MH being nC17 -nC20, CPI > 1 and with indistinct odd-even dominance. Therefore they are contributed by marine bio- logicla inputs. The contribution of land origin is larger than that of marine source. Pr/Ph is lower than 1 in the investigated area, which indicates the depositional environment of reducing reaction with lower oxygen. The result of factor analysis has good agreement with composition characteristics of n-alkanes in the sediment.展开更多
The adsorption equilibria of n-heptane, n-octane and n-nonane on silicalite and ZSM-5 have been measured in the temperature range of 373.15--473.15K under low pressure (0---5.332kPa). All the experimental data can be ...The adsorption equilibria of n-heptane, n-octane and n-nonane on silicalite and ZSM-5 have been measured in the temperature range of 373.15--473.15K under low pressure (0---5.332kPa). All the experimental data can be represented by a generalized characteristic curve of the extended adsorption potential theory utilizing the parameter of the initial heat of adsorption, which is estimated reasonably by a new approach.展开更多
Basing on the DFT calculations we propose the new theoretical model which describes both the surface tension σ of the short chain n-alkanes at their normal boiling points and their reaction rate constants with hydrox...Basing on the DFT calculations we propose the new theoretical model which describes both the surface tension σ of the short chain n-alkanes at their normal boiling points and their reaction rate constants with hydroxyl radicals OH<span style="white-space:nowrap;">•</span> (at 297 ± 2 K) on the basis of their molecular orbital electronic characteristics. It has been shown that intermolecular dispersion attraction within the surface liquid monolayer of these compounds, as well as their reaction rate constants k with OH<span style="white-space:nowrap;">•</span> radicals are determined by the energies <em>E<sub>orb</sub></em> of the specific occupied molecular orbitals which are the same in the determination of both the above physico-chemical characteristics of the studied n-alkanes. The received regression equations confirm the theoretically found dependences between the quantities of σ and k and the module |<em>E<sub>orb</sub></em>|. For the compounds under study this fact indicates the key role of their electronic structure particularities in determination of both the physical (surface tension) and the chemical (reaction rate constants) properties.展开更多
The solubilities of some solid n-alkanes in supercritical ethane were correlated and predicted in this paper using the Carnahan-Starling-van der Waals model with a density-dependent parameter of a12.At a given tempera...The solubilities of some solid n-alkanes in supercritical ethane were correlated and predicted in this paper using the Carnahan-Starling-van der Waals model with a density-dependent parameter of a12.At a given temperature,the linear fit of the parameter of a12and the density of the supercritical solvent was used for solubility correlation,resulting in an average absolute average relative deviation(AARD)of 8.68%,which was between the values of the semiempirical models and the other compressed gas models used in this article.In the linear fit of the parameter of a12and the density of the solvent,the regressed slope m and intercept n of the linear fit can be correlated with the carbon atom number of solid n-alkanes and then the solubilities of solid n-alkanes in supercritical ethane can be predicted with the intercept n and slope m.The average AARD in solubility prediction was 26.99%.展开更多
Long-chain n-alkanols and n-alkanes in core sediments from the northern South China Sea(SCS)were measured to make a comparison during terrestrial vegetation reconstruction from~42 ka to~7 ka.The results showed that te...Long-chain n-alkanols and n-alkanes in core sediments from the northern South China Sea(SCS)were measured to make a comparison during terrestrial vegetation reconstruction from~42 ka to~7 ka.The results showed that terrestrial vegetation record from long-chain n-alkanes matched well with previous studies in nearby cores,showing that more C_(4)plants developed during the Last Glacial Maximum(LGM)and C_(3)plants dominated in the interglacial period.However,these scenarios were not revealed by terrestrial vegetation reconstruction using long-chain n-alkanols,which showed C_(3)plant expansion during the LGM.The discrepancy during the interglacial period could be attributed to the aerobic degradation of functionalized long-chain n-alkanols in the oxygen-rich bottom water,resulting in poor preservation of terrestrial vegetation signals.On the other hand,the different advantages of functionalized n-alkanols and non-functional n-alkanes to record local and distal vegetation signals,respectively,may offer a potential explanation for the contradiction during the LGM when the SCS was characterized by low-oxygen deep water.Nevertheless,large variations on n-alkyl lipid compositions in C_(3)/C_(4)plants could play a part in modulating sedimentary long-chain n-alkanols and n-alkanes toward different vegetation signals,thereby suggesting that caution must be taken in respect to the terrestrial vegetation reconstruction using long-chain n-alkanes and long-chain n-alkanols.展开更多
The new theoretical models describe both the solubility S of the shot chain n-alkanes in water at 298.15 K, and their reaction rate constants k with nitronium cation NO<sub>2</sub><sup>+ </sup>...The new theoretical models describe both the solubility S of the shot chain n-alkanes in water at 298.15 K, and their reaction rate constants k with nitronium cation NO<sub>2</sub><sup>+ </sup>at 293.15 K on the basis of their molecular orbital characteristics. It is shown that both the quantities S and k are determined by the energies E<sub>orb</sub> of the specific virtual (for S) and occupied (for k) molecular orbitals of these n-alkanes. The obtained regression equations confirm the theoretically found dependences of S and k on the absolute value of E<sub>orb</sub>. This fact demonstrates that the electronic structure particularities of the studied n-alkanes play a crucial role in both their above-mentioned physicochemical properties.展开更多
Supercooling of the microencapsulated phase change materials(PCMs) during cooling usually happens. This phenomenon can interfere with heat transfer and is necessary to further overcome. In this study, mela- mine-for...Supercooling of the microencapsulated phase change materials(PCMs) during cooling usually happens. This phenomenon can interfere with heat transfer and is necessary to further overcome. In this study, mela- mine-formaldehyde microcapsules containing two n-alkane PCMs, namely, n-dodecane(Cl2) or n-tetradecane(C14) were prepared by in situ polymerization. A small amount of n-hexatriacontane(C36) was introduced as an organic ge- lator into the core of microcapsules to cope with the supercooling problem. Analyses demonstrate that supercooling of the microencapsulated C12 or C14 was significantly suppressed by adding 3%(mass fraction) C36, without changing the spherical morphology and dispersibility. It could be also found that the enthalpy of microencapsulated CI2 or C14 containing C36 was similar to that of microencapsulated n-alkanes without C36, whereas the difference between onsets of crystallization and melting(degree of supercooling) is similar to that of those of pure n-alkanes, suggesting the re- markable suppression ability of the organic gelator on supercooling.展开更多
With a production of 208.2 m3/d, heavy oil was produced by drill stem test (DST) from three shallow reservoirs in Sand Group Nos. Ⅰ and Ⅲ of the Neogene Guantao Formation (NgⅠ and NgⅢ) and the Eogene Dongying Form...With a production of 208.2 m3/d, heavy oil was produced by drill stem test (DST) from three shallow reservoirs in Sand Group Nos. Ⅰ and Ⅲ of the Neogene Guantao Formation (NgⅠ and NgⅢ) and the Eogene Dongying Formation (Ed) in an exploratory well Ban-14-1 within the Qianmiqiao region, Bohai Bay Basin, northern China. Based on the GC and GC-MS data of the NgⅠ and NgⅢ heavy oil samples, all n-alkanes and most isoprenoid hydrocarbons are lost and the GC baseline appears as an evident 'hump', implying a large quantity of unresolved complex mixture (UCM), which typically revealed a result of heavy biodegradation. However, there still is a complete series of C14-C73 n-alkanes in the high-temperature gas chromatograms (HTGC) of the heavy oil, among which, the abundance of C30- n-alkanes are drastically reduced. The C35-C55 high molecular weight (HMW) n-alkanes are at high abundance and show a normal distribution pattern with major peak at C43 and an obvious odd-carbon-number predominance with CPI37-55 and OEP45-49 values of 1.17 and 1.16-1.20, respectively. According to GC-MS analysis, the heavy oil is characterized by dual source inputs of aquatic microbes and terrestrial higher plants. Various steranes and tricyclic terpanes indicate an algal origin, and hopane-type triterpanes, C24 tetracyclic terpane and drimane series show the bacterial contribution. With the odd-carbon-number preference, HMW n-alkanes provide significant information not only on higher plant source input and immaturity, but also on the strong resistibility to biodegradation.展开更多
Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil...Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil diffusion in kerogen molecules are coupled together.The molecular flow of free n-alkanes is an important process of shale oil accumulation and production.To study the dynamics of imbibition process of n-alkane molecules into kerogen slits,molecular dynamics(MD)simulations are conducted.Effects of slit width,temperature,and n-alkane types on the penetration speed,dynamic contact angle,and molecular conformations were analyzed.Results showed that molecular transportation of n-alkanes is dominated by molecular structure and molecular motion at this scale.The space-confinement conformational changes of molecules slow down the filling speeds in the narrow slits.The n-alkane molecules with long carbon chains require more time to undergo conformational changes.The high content of short-chain alkanes and high temperature facilitate the flow of alkane mixtures in kerogen slits.Results obtained from this study are useful for understanding the underlying nanoscale flow mechanism in shale formations.展开更多
This study investigates the decomposition of a gas mixture of four n-alkanes(n-heptane,n-octane,n-nonane,and n-decane)using a dielectric barrier discharge reactor.We show that the conversion of n-alkanes increased fro...This study investigates the decomposition of a gas mixture of four n-alkanes(n-heptane,n-octane,n-nonane,and n-decane)using a dielectric barrier discharge reactor.We show that the conversion of n-alkanes increased from 7.2%(C7H(16)),9.7%(C8H(18)),8.4%(C9H(20)),and 10.5%(C(10)H(22))to 23.8%(C7H(16)),25.0%(C8H(18)),27.9%(C9H(20)),and 32.1%(C(10)H(22))when the energy density increased from 84 J l^-1 to 324 J l^-1.The conversion of n-alkanes when using the gas mixture is close to that found when using a single n-alkane.The influences of reaction temperature and O2 concentration are also investigated,and the activation energies for the decomposition of each alkane are given.展开更多
Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic n...Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic nutrients. To understand the effects of nutrient addition on the bioremediation of crude oil and the succession of bacterial communities during process of bioremediation, microcosms containing oilcontaminated sediments were constructed and biodegradation of crude oil was assessed based on the depletion of different ingredients. We used two culture-independent methods, denaturing gradient gel electrophoresis and a 16 S rRNA gene based clone library, to analyze the succession of bacterial communities. The results suggested n-alkanes were degraded after 30 days and that nutrient amendments significantly improved the efficiency of their biodegradation. Moreover, oil contamination and nutrient amendments could dramatically change bacterial community structures. Lower diversity was detected after being contaminated with oil. For instance, bacterial clones affiliated with the phylum Armatimonadetes, Firmicutes, Gemmatimonadetes, and Planctomycetes and the class Deltaproteobacteria and Epsilonproteobacteria could not be identified after 30 days of incubation with crude oil. However, "professional hydrocarbonocastic bacteria" became abundant in samples treated with oil during the bioremediation period, while these clones were almost completely absent from the control plots. Interestingly, bioinformatics analysis showed that even when dramatic differences in oil biodegradation efficiency were observed, bacterial communities in the plots with nutrient amendments were not significantly different from those in plots treated with oil alone. These findings indicated that nutrient amendments could stimulate the process of biodegradation but had less impact on bacterial communities. Overall, nutrient amendments might be able to stimulate the growth of n-alkane degrading bacteria.展开更多
Both monsoons and westerlies have exerted influence on climate dynamics over the Tibetan Plateau(TP) since the last deglaciation, producing complex patterns of paleohydroclimatic conditions. Diverse proxy records are ...Both monsoons and westerlies have exerted influence on climate dynamics over the Tibetan Plateau(TP) since the last deglaciation, producing complex patterns of paleohydroclimatic conditions. Diverse proxy records are essential to forge a robust understanding of the climate system on the TP. Currently, there is a general lack of understanding of the response of inland lakes over the TP to climate change, especially glacier-fed lakes. Paleohydrological reconstructions of such lakes could deepen our understanding of the history of lake systems and their relationship to regional climate variability. Here we use records of n-alkanes and grain size from the sediments of Bangong Co in the western TP to reconstruct paleohydrological changes over the past 16,000 years. The Paq record(the ratio of non-emergent aquatic macrophytes versus emergent aquatic macrophytes and terrestrial plants) is generally consistent with the variations in summer temperature and precipitation isotopes. The changes in grain-size distributions show a similar trend to Paq but with less pronounced fluctuations in the early-middle Holocene. The new data combined with previous results from the site demonstrate that: 1) Bangong Co experienced relatively large water-level fluctuations during the last deglaciation, with a steadily high lake-level during the early-middle Holocene and a decreasing lake-level in the late Holocene;2) The lake level fluctuations were driven by both high summer temperatures via the melting water and monsoon precipitation. However, the dominant factor controlling lake level changed over time. The lake-level history at Bangong Co deduced from the n-alkanes and grain-size records reveals the past hydrological changes in the catchment area, and stimulates more discussion about the future of glacier-fed lakes under the conditions of unprecedented warming in the region.展开更多
基金financially supported in part by China Agriculture Research System (CARS-37)
文摘The application of n-alkane as markers to estimate herbage intake, apparent digestibility and species composition of diet consumed by grazing sheep was studied. Six local Mongolian sheep were used to determine dry matter (DM) intake, apparent DM digestibility and species composition of diet during summer, autumn and winter. Animals were orally dosed twice daily with n-alkane gelatin capsules containing 60 mg C32-alkane as an external marker. Diet composition was estimated by comparing the odd-chain n-alkanes pattern profile (C27-C31) of the consumed plant species with the n-alkanes fecal concentrations of grazing animals, using a non-negative least squares algorithm called EATWHAT software package. The alkane pair C32:C33 and C33 alkane were used to estimate DM intake and diet apparent DM digestibility, respectively. The results showed that daily dry matter intake of the sheep were 1.77, 1.61 and 1.18 kg d-1 in summer, autumn and winter, respectively. Apparent DM digestibility, crude protein (CP), metabolizable energy (ME) and neutral detergent fiber (NDF) intake of diet consumed by sheep decreased significantly (P〈0.01) from summer to winter, with no evident changes in ADF and ADL intake. Diet composition indicated Artemisia frigida Willd was the most dominant diet component, contributed 79.68, 68.12 and 86.26% of sheep's diets in summer, autumn and winter, respectively. Cleistogenes songorica Ohwi and Convolvulus arnmannii Desr were the important components of the diet. Although Stipa breviflora Griseb is one of the main plant species in the study area, the sheep rarely choosed it. The study indicated that CP and ME in diet consumed by sheep were deficient in winter. Therefore, appropriate supplementation strategies should be indispensable during this period.
基金co-supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0201)the Basic Scientific Research Fund of Institute of Geology,Chinese Academy of Geological Sciences(J2018),Geological Survey Project of China(DD20190370)+1 种基金National Natural Science Foundation of China(Grant 41877301)China Postdoctoral Science Foundation(2017M620852)。
文摘n-Alkanes are widely used in paleoenvironmental reconstructions.However,our understanding of changes in the distribution of n-alkanes with climatic and environmental factors remains unclear in arid/semi-arid regions.We sampled 26 surface sediments from three climatic zones across the southwestern Tibetan Plateau to evaluate the sensitivity of chain length distributions of n-alkanes to climatic and environmental parameters.Our observations demonstrate that average chain length(ACL),proportion of aquatic macrophyte(Paq),carbon preference index(CPI)and ratio of the contents of nC_(27)and nC_(31)(nC_(27)/nC_(31))are all sensitive to hydroclimatic conditions.In contrast to commonly-adopted assumptions,the correlations between these indices and hydrological parameters are not always good,which indicates that the interpretation of n-alkane indices is special on the southwestern Tibetan Plateau.These might be related to the vegetation characteristics and seasonality of biological activity,and need to be considered in paleoclimatic reconstruction.The impact of seasonal precipitation on n-alkanes indices was also evaluated.
基金This study is funded by the special funds from the National Key Basic Research Program of China under contract Nos 2006CB400601 and 2004CB720505the National Natural Science Foundation of China under contract Nos 90211009,40476037 and 40476036+2 种基金Shanghai Rising-star Project in China under contract No.04QMX1420the Program for New Century Excellent Talents in University of China under contract No.NCET-04-0424the Ministry of Education of China under contract No.PCSIRT0427.
文摘Particulate samples were collected from the Changjiang river system during a flood period, in May 1997, and POC, stable isotope and lipids associated with particles were examined. Results showed the decrease (0.84% ~ 1.88%) of organic carbon content from the upper reaches to the estuary.δ^13 values of particulate organic carbon was in the range of -24.9×10^-3 to -26.6×10^-3, which were close to the isotopic signature of continental C3 vegetation. Total particulate n-alkanes concentrations varied from 1.4 to 10.1μg/dm^3,or from 23.7 to 107μg/g of total suspended matter. Fatty acids were present in all the samples, from 1.4 to 5.4μg/dm^3, with saturated and unsaturated straight-chain and branched compounds in the carbon number range from C12 to C30. Both δ^13 and the ratio of carbon content to nitrogen content indicate the predominance of terrestrial inputs (soil organic matter) among the particles. The biomarker approach has been used to identify the relative portion of terrigenous and autochthonous fraction in the particulate samples. The distribution of fatty acids suggests a striking phytoplanktonic and microbial signal in most particle samples. The terrestrial alkanes are used to estimate the contribution of terrestrial inputs along the mainstream.
基金The National Natural Science Foundation of China under contract Nos 41030859,41506223,CHINARE2017-03-02 and IC201105the Geological Investigation Project of China Geological Survey under contract Nos 12120113006200 and 1212011120044
文摘The records of high-resolution terrestrial biological markers (biomarkers) from Core B2-9 from the northern Bering Sea Slope over the last 9.6 ka BP were presented in the study. Variations in input of terrestrial long-chain n-alkanes (referred to as n-alkanes) and vegetation structure in their source regions were investigated. The results show that the nCz7 is the main carbon peak and has the greatest contribution rate of the total n-alkane content; this might be related to the abundance of woody plants and their spatial distribution in the source region, nC23 is another n-alkane having a relatively high content; this was mainly derived from submerged plants widespread along the coastal areas in the northern hemisphere. Total n-alkane content dropped quickly at ca. 7.8 ka BP, ca. 6.7 ka BP and ca. 5.4 ka BP, and was followed by four relatively stable stages mostly controlled by sea-level rise, climate change and vegetation distribution in the source region. Variation in carbon preference index (CPI) indicates that the n-alkanes primarily originated from higher land plants, and the average chain length (ACL) and nCa1/nC27 ratio reveal the relatively stable presence of woody/herbaceous plants during the Holocene, and dominate woody plants in most of the time. Simultaneous variation in total n-alkane content, nC27 content and its contribution, CPI, ACL and nC31/nC27 ratio over several short periods suggest that the growth rate of the woody plant n-alkane contribution was lower than that of herbaceous plants and fossil n-alkanes under the particular climatic conditions of the source region.
基金H. Karimi and F. Yousefi would like to thank Yasouj University for supporting this project
文摘In our previous paper we extended the Tao and Mason equation of state (TM EOS) to refrigerant fluids, using the speed of sound data. This is a continuation for evaluating TM EOS in predicting PVT properties of heavy n-alkanes. Liquid density of long-chain n-alkane systems from C 9 to C 20 have been calculated using an analytical equation of state based on the statistical-mechanical perturbation theory. The second virial coefficients of these n-alkanes are scarce and there is no accurate potential energy function for their theoretical calculation. In this work the second virial coefficients are calculated using a corresponding state correlation based on surface tension and liquid density at the freezing point. The deviation of calculated densities of these alkanes is within 0.5% from experimental data. The densities of n-alkanes obtained from the TM EOS are compared with those calculated from Ihm-Song-Mason equation of state and the corresponding-states liquid densities (COSTALD). Our results are in favor of the preference of the TM EOS over other two equations of state.
文摘Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences of luminous intensity and concentration of molecular chlorine on the rate of polychlorination are demonstrated by the model. If the luminous intensity is adequate, the polychlorination rate of n-alkane is only controlled by the flow rate of molecular chlorine in a wide range of temperature, and the changes of temperature and luminous intensity have less effect on the reaction rate. In addition, the predictions of chlorine content of polychlorinated n-alkane calculated with the model agree very well with experimental results.
基金financially supported by the Ministry of Science and Technology of People’s Republic of China (No. 2016YFA0600904)the National Natural Science Foundation of China (No. 41476058)。
文摘Stable carbon isotopic compositions of n-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain n-alkanes in surface sediments are predominantly long-chain C27, C29, and C31 types, with obvious odd carbon predominance. The δ13 C values of long-chain n-C27, n-C29, and n-C31 alkanes are-30.8% ± 0.5‰,-31.9% ± 0.6‰, and-32.1% ± 1.0‰, respectively, within the range of n-alkanes of C3 terrestrial higher plants. This suggests that sedimentary n-alkanes are derived mainly from terrestrial higher plants. Compound-specific carbon isotopic analysis of long-chain n-alkanes indicates that C3 terrestrial higher plants predominate(64%–79%), with angiosperms being the main contributors. The n-alkane δ13 C values indicate that mid-chain n-alkanes in sediments are derived mainly from aquatic emergent macrophytes, with significant petroleum pollution and bacterial degradation sources for short-chain n-alkanes.
基金This study was supported by The NKBRSF Project under contract No. G2000078500 and the First Chinese NationalScientific Expedit
文摘This paper reports different concentration patterns of n-alkanes distribution in the sedi- ments from the Chukchi Sea, the Bering Sea in the Arctic. Factor statistical analysis method is used for studying the source of n-alkanes and paleoenvironment. The result shows that n-alkanes is in the range of nC15-nC33 and n-alkane distribution patterns are characterized by two modes. The first mode belongs to the higher molecular with MH being nC25-nC27, CPI > 1 and with remarkable odd-even dominance. They are of terrigenous plant origin. The second one belongs to lower carbon range with MH being nC17 -nC20, CPI > 1 and with indistinct odd-even dominance. Therefore they are contributed by marine bio- logicla inputs. The contribution of land origin is larger than that of marine source. Pr/Ph is lower than 1 in the investigated area, which indicates the depositional environment of reducing reaction with lower oxygen. The result of factor analysis has good agreement with composition characteristics of n-alkanes in the sediment.
文摘The adsorption equilibria of n-heptane, n-octane and n-nonane on silicalite and ZSM-5 have been measured in the temperature range of 373.15--473.15K under low pressure (0---5.332kPa). All the experimental data can be represented by a generalized characteristic curve of the extended adsorption potential theory utilizing the parameter of the initial heat of adsorption, which is estimated reasonably by a new approach.
文摘Basing on the DFT calculations we propose the new theoretical model which describes both the surface tension σ of the short chain n-alkanes at their normal boiling points and their reaction rate constants with hydroxyl radicals OH<span style="white-space:nowrap;">•</span> (at 297 ± 2 K) on the basis of their molecular orbital electronic characteristics. It has been shown that intermolecular dispersion attraction within the surface liquid monolayer of these compounds, as well as their reaction rate constants k with OH<span style="white-space:nowrap;">•</span> radicals are determined by the energies <em>E<sub>orb</sub></em> of the specific occupied molecular orbitals which are the same in the determination of both the above physico-chemical characteristics of the studied n-alkanes. The received regression equations confirm the theoretically found dependences between the quantities of σ and k and the module |<em>E<sub>orb</sub></em>|. For the compounds under study this fact indicates the key role of their electronic structure particularities in determination of both the physical (surface tension) and the chemical (reaction rate constants) properties.
基金Supported by the National Natural Science Foundation of China(21206077)
文摘The solubilities of some solid n-alkanes in supercritical ethane were correlated and predicted in this paper using the Carnahan-Starling-van der Waals model with a density-dependent parameter of a12.At a given temperature,the linear fit of the parameter of a12and the density of the supercritical solvent was used for solubility correlation,resulting in an average absolute average relative deviation(AARD)of 8.68%,which was between the values of the semiempirical models and the other compressed gas models used in this article.In the linear fit of the parameter of a12and the density of the solvent,the regressed slope m and intercept n of the linear fit can be correlated with the carbon atom number of solid n-alkanes and then the solubilities of solid n-alkanes in supercritical ethane can be predicted with the intercept n and slope m.The average AARD in solubility prediction was 26.99%.
基金The Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0104the Science and Technology Program of Guangzhou,China under contract No.201804010264+3 种基金the Guangdong MEPP Fund under contract No.GDOE[2019]A41the National Natural Science Foundation of China under contract No.41706059the Fund of Institution of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences under contract No.ISEE2020YB05the State Key R&D Project under contract No.2016YFA0601104。
文摘Long-chain n-alkanols and n-alkanes in core sediments from the northern South China Sea(SCS)were measured to make a comparison during terrestrial vegetation reconstruction from~42 ka to~7 ka.The results showed that terrestrial vegetation record from long-chain n-alkanes matched well with previous studies in nearby cores,showing that more C_(4)plants developed during the Last Glacial Maximum(LGM)and C_(3)plants dominated in the interglacial period.However,these scenarios were not revealed by terrestrial vegetation reconstruction using long-chain n-alkanols,which showed C_(3)plant expansion during the LGM.The discrepancy during the interglacial period could be attributed to the aerobic degradation of functionalized long-chain n-alkanols in the oxygen-rich bottom water,resulting in poor preservation of terrestrial vegetation signals.On the other hand,the different advantages of functionalized n-alkanols and non-functional n-alkanes to record local and distal vegetation signals,respectively,may offer a potential explanation for the contradiction during the LGM when the SCS was characterized by low-oxygen deep water.Nevertheless,large variations on n-alkyl lipid compositions in C_(3)/C_(4)plants could play a part in modulating sedimentary long-chain n-alkanols and n-alkanes toward different vegetation signals,thereby suggesting that caution must be taken in respect to the terrestrial vegetation reconstruction using long-chain n-alkanes and long-chain n-alkanols.
文摘The new theoretical models describe both the solubility S of the shot chain n-alkanes in water at 298.15 K, and their reaction rate constants k with nitronium cation NO<sub>2</sub><sup>+ </sup>at 293.15 K on the basis of their molecular orbital characteristics. It is shown that both the quantities S and k are determined by the energies E<sub>orb</sub> of the specific virtual (for S) and occupied (for k) molecular orbitals of these n-alkanes. The obtained regression equations confirm the theoretically found dependences of S and k on the absolute value of E<sub>orb</sub>. This fact demonstrates that the electronic structure particularities of the studied n-alkanes play a crucial role in both their above-mentioned physicochemical properties.
文摘Supercooling of the microencapsulated phase change materials(PCMs) during cooling usually happens. This phenomenon can interfere with heat transfer and is necessary to further overcome. In this study, mela- mine-formaldehyde microcapsules containing two n-alkane PCMs, namely, n-dodecane(Cl2) or n-tetradecane(C14) were prepared by in situ polymerization. A small amount of n-hexatriacontane(C36) was introduced as an organic ge- lator into the core of microcapsules to cope with the supercooling problem. Analyses demonstrate that supercooling of the microencapsulated C12 or C14 was significantly suppressed by adding 3%(mass fraction) C36, without changing the spherical morphology and dispersibility. It could be also found that the enthalpy of microencapsulated CI2 or C14 containing C36 was similar to that of microencapsulated n-alkanes without C36, whereas the difference between onsets of crystallization and melting(degree of supercooling) is similar to that of those of pure n-alkanes, suggesting the re- markable suppression ability of the organic gelator on supercooling.
基金Th is study was supported by the National Natural Science Foundation of China(NSFC,no.40172056)the Research Fund for the Doctoral Program of Higher Education,China(RFDP,no.2000042506).
文摘With a production of 208.2 m3/d, heavy oil was produced by drill stem test (DST) from three shallow reservoirs in Sand Group Nos. Ⅰ and Ⅲ of the Neogene Guantao Formation (NgⅠ and NgⅢ) and the Eogene Dongying Formation (Ed) in an exploratory well Ban-14-1 within the Qianmiqiao region, Bohai Bay Basin, northern China. Based on the GC and GC-MS data of the NgⅠ and NgⅢ heavy oil samples, all n-alkanes and most isoprenoid hydrocarbons are lost and the GC baseline appears as an evident 'hump', implying a large quantity of unresolved complex mixture (UCM), which typically revealed a result of heavy biodegradation. However, there still is a complete series of C14-C73 n-alkanes in the high-temperature gas chromatograms (HTGC) of the heavy oil, among which, the abundance of C30- n-alkanes are drastically reduced. The C35-C55 high molecular weight (HMW) n-alkanes are at high abundance and show a normal distribution pattern with major peak at C43 and an obvious odd-carbon-number predominance with CPI37-55 and OEP45-49 values of 1.17 and 1.16-1.20, respectively. According to GC-MS analysis, the heavy oil is characterized by dual source inputs of aquatic microbes and terrestrial higher plants. Various steranes and tricyclic terpanes indicate an algal origin, and hopane-type triterpanes, C24 tetracyclic terpane and drimane series show the bacterial contribution. With the odd-carbon-number preference, HMW n-alkanes provide significant information not only on higher plant source input and immaturity, but also on the strong resistibility to biodegradation.
基金financially supported by the National Natural Science Foundation of China(Grant No.52004317,42090024)the Natural Science Foundation of Shandong Province of China(No.ZR2020ME091)+1 种基金the Fundamental Research Funds for the Central Universities(20CX06016A)the National Science and Technology Major Project(2017ZX05049-004)
文摘Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil diffusion in kerogen molecules are coupled together.The molecular flow of free n-alkanes is an important process of shale oil accumulation and production.To study the dynamics of imbibition process of n-alkane molecules into kerogen slits,molecular dynamics(MD)simulations are conducted.Effects of slit width,temperature,and n-alkane types on the penetration speed,dynamic contact angle,and molecular conformations were analyzed.Results showed that molecular transportation of n-alkanes is dominated by molecular structure and molecular motion at this scale.The space-confinement conformational changes of molecules slow down the filling speeds in the narrow slits.The n-alkane molecules with long carbon chains require more time to undergo conformational changes.The high content of short-chain alkanes and high temperature facilitate the flow of alkane mixtures in kerogen slits.Results obtained from this study are useful for understanding the underlying nanoscale flow mechanism in shale formations.
基金supported by the Zhejiang Basic Public Welfare Research Program(No.LGG19E080001)Natural Science Foundation of Zhejiang Province(No.LY19B070002)。
文摘This study investigates the decomposition of a gas mixture of four n-alkanes(n-heptane,n-octane,n-nonane,and n-decane)using a dielectric barrier discharge reactor.We show that the conversion of n-alkanes increased from 7.2%(C7H(16)),9.7%(C8H(18)),8.4%(C9H(20)),and 10.5%(C(10)H(22))to 23.8%(C7H(16)),25.0%(C8H(18)),27.9%(C9H(20)),and 32.1%(C(10)H(22))when the energy density increased from 84 J l^-1 to 324 J l^-1.The conversion of n-alkanes when using the gas mixture is close to that found when using a single n-alkane.The influences of reaction temperature and O2 concentration are also investigated,and the activation energies for the decomposition of each alkane are given.
基金Supported by the Hundred Talents Program of the Chinese Academy of Sciences awarded to Dr.Xiaoke HUthe Key Research Program of Chinese Academy of Sciences(No.KZZD-EW-14)+1 种基金the Science and Technology Program of Shandong Province(No.2013GHY11534)the National Natural Science Foundation of China(Nos.41376138,41576165)
文摘Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic nutrients. To understand the effects of nutrient addition on the bioremediation of crude oil and the succession of bacterial communities during process of bioremediation, microcosms containing oilcontaminated sediments were constructed and biodegradation of crude oil was assessed based on the depletion of different ingredients. We used two culture-independent methods, denaturing gradient gel electrophoresis and a 16 S rRNA gene based clone library, to analyze the succession of bacterial communities. The results suggested n-alkanes were degraded after 30 days and that nutrient amendments significantly improved the efficiency of their biodegradation. Moreover, oil contamination and nutrient amendments could dramatically change bacterial community structures. Lower diversity was detected after being contaminated with oil. For instance, bacterial clones affiliated with the phylum Armatimonadetes, Firmicutes, Gemmatimonadetes, and Planctomycetes and the class Deltaproteobacteria and Epsilonproteobacteria could not be identified after 30 days of incubation with crude oil. However, "professional hydrocarbonocastic bacteria" became abundant in samples treated with oil during the bioremediation period, while these clones were almost completely absent from the control plots. Interestingly, bioinformatics analysis showed that even when dramatic differences in oil biodegradation efficiency were observed, bacterial communities in the plots with nutrient amendments were not significantly different from those in plots treated with oil alone. These findings indicated that nutrient amendments could stimulate the process of biodegradation but had less impact on bacterial communities. Overall, nutrient amendments might be able to stimulate the growth of n-alkane degrading bacteria.
基金financially supported by the Natural Science Foundation of China (41601205,41772178,41072120)
文摘Both monsoons and westerlies have exerted influence on climate dynamics over the Tibetan Plateau(TP) since the last deglaciation, producing complex patterns of paleohydroclimatic conditions. Diverse proxy records are essential to forge a robust understanding of the climate system on the TP. Currently, there is a general lack of understanding of the response of inland lakes over the TP to climate change, especially glacier-fed lakes. Paleohydrological reconstructions of such lakes could deepen our understanding of the history of lake systems and their relationship to regional climate variability. Here we use records of n-alkanes and grain size from the sediments of Bangong Co in the western TP to reconstruct paleohydrological changes over the past 16,000 years. The Paq record(the ratio of non-emergent aquatic macrophytes versus emergent aquatic macrophytes and terrestrial plants) is generally consistent with the variations in summer temperature and precipitation isotopes. The changes in grain-size distributions show a similar trend to Paq but with less pronounced fluctuations in the early-middle Holocene. The new data combined with previous results from the site demonstrate that: 1) Bangong Co experienced relatively large water-level fluctuations during the last deglaciation, with a steadily high lake-level during the early-middle Holocene and a decreasing lake-level in the late Holocene;2) The lake level fluctuations were driven by both high summer temperatures via the melting water and monsoon precipitation. However, the dominant factor controlling lake level changed over time. The lake-level history at Bangong Co deduced from the n-alkanes and grain-size records reveals the past hydrological changes in the catchment area, and stimulates more discussion about the future of glacier-fed lakes under the conditions of unprecedented warming in the region.