期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles 被引量:18
1
作者 ZHANG Wei-hua QUAN Xie ZHANG Zhuo-yong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第3期362-366,共5页
Nanoscale bimetallic Ni/Fe particles were synthesized from the reaction of sodium borohydride (NaBH4) with reduction of Ni^2+ and Fe^2+ in aqueous solution. The obtained Ni/Fe particles were characterized by TEM ... Nanoscale bimetallic Ni/Fe particles were synthesized from the reaction of sodium borohydride (NaBH4) with reduction of Ni^2+ and Fe^2+ in aqueous solution. The obtained Ni/Fe particles were characterized by TEM (transmission electron microscope), XRD (X-ray diffractometer), and N2-BET. The dechlorination activity of the Ni/Fe was investigated using p-chlorophenol (p-CP) as a probe agent. Results demonstrated that the nanoscale Ni/Fe could effectively dechlorinate p-CP at relatively low metal to solution ratio of 0.4 g/L (Ni 5 wt%). The target with initial concentration ofp-CP 0.625 mmol/L was dechlorinted completely in 60 rain under ambient temperature and pressure. Factors affecting dechlorination efficiency, including reaction temperature, pH, Ni loading percentage over Fe, and metal to solution ratio, were investigated. The possible mechanism of dechlorination ofp-CP was proposed and discussed. The pseudo-first- order reaction took place on the surface of the Ni/Fe bimetallic particles, and the activation energy of the dechlorination reaction was determined to be 21.2 kJ/mol at the temperature rang of 287-313 K. 展开更多
关键词 Ni/Fe bimetal nanoscale particles catalytic reduction p-CP DECHLORINATION
下载PDF
Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation
2
作者 Hui Li Zhan-tao Han +2 位作者 Qiang Deng Chun-xiao Ma Xiang-ke Kong 《Journal of Groundwater Science and Engineering》 2023年第1期55-67,共13页
Nanoscale zero-valent iron particles(NZVI) produced by using green tea(GT) extract as a reductant can remove Cr(Ⅵ) from water effectively,which can be utilized in groundwater remediation.In order to define the reacti... Nanoscale zero-valent iron particles(NZVI) produced by using green tea(GT) extract as a reductant can remove Cr(Ⅵ) from water effectively,which can be utilized in groundwater remediation.In order to define the reaction mechanism and removal effect in the aquifer,in this study,GT-NZVI particles were prepared and measured by some characterization methods to define their surface performance,and then batch and one-dimensional experiments were carried out to reveal the reaction properties of GT-NZVI and Cr(Ⅵ) in groundwater.The results showed that the prepared GT-NZVI particles were regular spherical with a diameter of 10-20 nm,which could disperse in water stably.The main component of GT-NZVI wasα-Fe with superficial polyphenols as a stabilizer.GT-NZVI suspension had good ability to reduce the Cr(Ⅵ) to Cr(Ⅲ) in water.When the concentration of GT-NZVI was 1 g/L,the removal efficiency of Cr(Ⅵ)with an initial concentration of 100 mg/L reached 92.8% in 1 h reaction.In column tests,GT-NZVI passed through the natural sand column successfully with an average outflow percentage of 71.2%.The simulated in-situ reaction zone(IRZ) with GT-NZVI was used to remediate Cr(Ⅵ) contaminated groundwater.The oufflow concentration of Cr(Ⅵ) kept in 0.14-0.32 mg/L corresponding to the outflow rate below 0.32%within 15 days,and the removal efficiency of Cr(Ⅵ) by IRZ with GT-NZVI decreased with the increase of aquifer medium particle size,groundwater flow rate and ionic strength.Most of Cr(Ⅲ) as reduzate was adsorbed or immobilized on the surface or in the lattice of GT-NZVI,which indicated effective immobilization for chromium. 展开更多
关键词 nanoscale iron particles Green tea Hexavalent chromium Groundwater remediation
下载PDF
Al_(80)Ni_6Y_8Co_4Cu_2 GLASS ALLOYS CONTAINING NANOSCALEPARTICLES BY ISOTHERMAL ANNEALING OR QUENCHING 被引量:16
3
作者 Z. Bian, G. He and G.L. Chen (State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China) J. Lu, D.J. Chen, G.C. Tu, G.J. Chen and X.J. Hu (Shougang Metallurgical Research Institute, Beijing 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第5期1039-1046,共8页
Al80Ni6 Y8 Co4 Cu2 amorphous ribbons were isothermally annealed and a mixed structure consisting of α-Al particle with a size of less than 15nm and Al3Ni compound with a size of about 30nm was obtained. The crystall... Al80Ni6 Y8 Co4 Cu2 amorphous ribbons were isothermally annealed and a mixed structure consisting of α-Al particle with a size of less than 15nm and Al3Ni compound with a size of about 30nm was obtained. The crystallization kinetics of Al80Ni6 Y8 Co4 Cu2 amorphous alloy shows that the precipitation of α-Al particles is the growth process controlled by diffusion of the solute elements rejected from the growing crystals. By quenching at different cooling rates, a mixed structure consisting of nanoscale α-Al particles and the remaining glass matrix or structure consisting of nanoscale particle (Al phase or Al3Ni compound) with a size of about 100nm was formed. The addition of Co elements and Cu elements to Al-Ni-Y alloy systems increases the glass formation ability of the alloy and the thermal stability of the supercooled liquid region against crystallization, which results from significant difference of atomic size, strong bonding nature among constituent elements and the low diffisivity of the solute elements due to the concentration gradient in the growing front of crystals. 展开更多
关键词 a mixed structure nanoscale particle isothermal annealing cooling rate concentration gradient α-Al particle Al3Ni compound
下载PDF
Synthesis of Nanoscale Shell-core Titania Coated Silica Particles in the Presence of Polyether Polyamine and the Phase Transition 被引量:6
4
作者 HUA Feng-jun SUN Jun +2 位作者 HONG Ke GAO Lian YANG Yu-liang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2002年第1期70-74,共5页
The nanoscale titania coated silica was prepared via a two-step precipitating approach, where the nanoscale silica nuclei were first prepared by passing an aqueous solution of sodium silicate through an ion-exchange r... The nanoscale titania coated silica was prepared via a two-step precipitating approach, where the nanoscale silica nuclei were first prepared by passing an aqueous solution of sodium silicate through an ion-exchange resin bed, then coated with the precipitation from hydrolyzed butyl titanate in an ethanol-hexane mixture at a low pH value in the presence of poly(ethylene oxide) polyamine salt(PPA) at a high temperature of 90 ℃. In the second-step precipitating process, the spontaneously precipitated titania shell on the silica nuclei was stabilized in the suspension solution with the help of the adsorption of PPA on the particles. A possible precipitating mechanism was suggested. Furthermore, the amorphous titania shell could undergo crystallization from the amorphous to the anatase structure at a high temperature of 650 ℃, and a further phase transition from the anatase to the rutile structure in the different sintering processes at a rising temperature of 750 ℃. 展开更多
关键词 nanoscale particle Silica sol Titania coated silica
下载PDF
Catalytic dechlorination of o-chlorophenol by nanoscale Pd/Fe
5
作者 WEIJian-jun XUXin-hua WANGDa-hui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期621-623,共3页
Transformation of chlorophenols by nanoscale bimetallic particles represents one of the latest innovative technologies for environmental remediation. Nanoscale Pd/Fe bimetallic particles were synthesized in the labora... Transformation of chlorophenols by nanoscale bimetallic particles represents one of the latest innovative technologies for environmental remediation. Nanoscale Pd/Fe bimetallic particles were synthesized in the laboratory for treatment of o-chlorophenol. Most of the nanoscale particles are in the size range of 20—100 nm. BET specific surface area of the nanoscale Pd/Fe particles is 12.4 m2/g. In comparison, a commercially available Fe powder(<100 mesh) has a specific surface area of just 0\^49 m2/g. Batch experiments demonstrated that the nanoscale Pd/Fe bimetallic particles can effectively dechlorinate o-chlorophenol. Dechlorination efficiency is affected by the mass fraction of Pd in the bimetal, nanoscale Pd/Fe mass concentration and mixing intensity. 展开更多
关键词 nanoscale particles PD/FE DECHLORINATION O-CHLOROPHENOL
下载PDF
Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle 被引量:7
6
作者 CHEN, Chao WANG, Xiangyu +1 位作者 CHANG, Ying LIU, Huiling 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第8期945-951,共7页
Nanoscale palladized iron(Pd/Fe)bimetallic particles were prepared by reductive deposition method.The particles were characterized by X-ray diffraction(XRD),X-ray fluorescence(XRF),scanning electron microscope(SEM),tr... Nanoscale palladized iron(Pd/Fe)bimetallic particles were prepared by reductive deposition method.The particles were characterized by X-ray diffraction(XRD),X-ray fluorescence(XRF),scanning electron microscope(SEM),transmission electron microscope(TEM),and Brunauer-Emmett-Teller-nitrogen(BET-N_2)method.Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles containedα-Fe^0.Detected Pd to Fe ratio by weight(Pd/Fe ratio)was close to theoretical value. Spherical granules with diame... 展开更多
关键词 nanoscale Pd/Fe bimetallic particles DECHLORINATION monochloroacetic acid
下载PDF
High-ductility fine-grained Mg-1.92Zn-0.34Y alloy fabricated by semisolid and then hot extrusion
7
作者 Qi Zeng Yingbo Zhang +4 位作者 Kangning Li Ye Zhuang Jiaheng Li Yong JYuan Dongdi Yin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期533-542,共10页
The combination of semisolid and hot extrusion processing was applied to refine the icosahedral quasicrystalline phase(I-phase) in an extruded Mg-1.92Zn-0.34Y(wt.%) alloy for the first time. The semisolid isothermal h... The combination of semisolid and hot extrusion processing was applied to refine the icosahedral quasicrystalline phase(I-phase) in an extruded Mg-1.92Zn-0.34Y(wt.%) alloy for the first time. The semisolid isothermal heat treatment transformed the micron-sized I-phase particles into nano lamellar eutectic(α-Mg + I-phase) with a lamellar spacing of ?86 nm. After subsequent hot extrusion at 250 ℃, the nano lamellar eutectic phases were broken into uniformly dispersed nanoscale I-phase particles. What’s more, the matrix microstructure was significantly refined with an equiaxed average grain size of 2.59 ± 0.81 μm, and an unusual texture component(most of the grains’ c-axis is parallel to the extrusion direction) was observed. The processed alloy exhibited a high tensile elongation to failure(EL) of 44 ± 2.6%with an ultimate tensile strength(UTS) of 258 ± 2.0 MPa and a tensile yield strength(TYS) of 176 ± 1.6 MPa at room temperature.The high ductility from the combined effects of the grain refinement, dispersion of nanoscale I-phase particles, and the unusual texture.The uniform dispersion of nanoscale I-phase particles could promote grain refinement by particle stimulated nucleation mechanism, and thus bring the unusual texture(where the c-axis is aligned parallel to the extrusion direction during dynamic recrystallization, which contributed to ductility). 展开更多
关键词 High ductility Unusual texture nanoscale I-phase particle Microstructure
下载PDF
Nanocrystallization of Al_(80) Ni_6Y_8Co_4Cu_2 amorphous alloy
8
作者 边赞 孙玉峰 +1 位作者 何国 陈国良 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期254-257,共4页
Nanoscale α (Al) phase with a size of 15 nm was precipitated from Al 80 Ni 6Y 8Co 4Cu 2 amorphous ribbons after annealing. The microhardness increases with increasing the crystallization volume fraction of nanoscale ... Nanoscale α (Al) phase with a size of 15 nm was precipitated from Al 80 Ni 6Y 8Co 4Cu 2 amorphous ribbons after annealing. The microhardness increases with increasing the crystallization volume fraction of nanoscale α (Al) phase. The combination effect of alloy strengthening and dispersion strengthening is main reason for the increase of microhardness. The formation of intermetallic compound (Al 3Ni) with a small volume fraction leads to the decrease of microhardness resulting from the depletion of the solute elements in the residual amorphous matrix and the weakening of alloy strengthening. With increasing the volume fraction of intermetallic compound, microhardness increases again due to dispersion strengthening of nanoscale intermetallic compound. [ 展开更多
关键词 nanoscale α (Al) particle alloy strengthening dispersion strengthening MICROHARDNESS
下载PDF
Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment 被引量:2
9
作者 Yanlai HAN Michael D. Y. YANG +1 位作者 Weixian ZHANG Weile YAN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第5期813-822,共10页
Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a faci... Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu (II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg.L~ or lower) due to accelerated deactivation of iron surface at elevated nitrate concentra- tions. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research. 展开更多
关键词 iron nanoparticles nanoscale iron particles(nZVI) SYNTHESIS characterization Cu(II) reduction nitratereduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部