Soil microbiotic crusts cover extensive portions of the arid and semiarid regions of the world and play an important ecological role.Moss is one of the major components in the crusts.The reproduction and establishment...Soil microbiotic crusts cover extensive portions of the arid and semiarid regions of the world and play an important ecological role.Moss is one of the major components in the crusts.The reproduction and establishment of the mosses are crucial to the formation of moss crusts.Bryum argenteum is the dominant species of moss crusts in the Shapotou region(104°57′E,37°27′N)of the Tengger Desert.In search for the characteristics of natural reproduction and establishment of the mosses,10 quadrates(10×10 cm for each)were obtained by removing the moss crusts in different positions of fixed dunes.These 10 quadrates were observed for 3 years depending on the species’components and coverage.Meanwhile,in the third year,two quadrates(1×1 m for each)were set up in a crustabsent area and two different experiments of the asexual reproduction(broadcast planting and offshoots)were conducted,respectively.The reproductive process was observed under the microscope,and the morphological indicators of the new individuals were measured.The results were compared with the ones from indoor experiments using the same methods.All the results showed the following:(1)70%of the quadrates(i.e.,7 of the 10 quadrates)were recovered within 3–4 years;thus,the quick recovery might be due to the dispersal and reproduction of the fragments of stems and leaves of B.argenteum;(2)as for the two quadrates in the artificial reproduction test,the new plants occupied the uncovered space of the quadrates in 1 month,and there were two main reproduction approaches,one of which was that the stems continually branched and produced young plants,and the other was that the young plants and the fragments of the stems and leaves repeatedly and extensively reproduced protonema,which finally developed into a large number of new plants;(3)the reproductive characteristics were identical,though the protonema in the field was more robust and had more branches than the ones indoors.展开更多
Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is ...Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is the resilience to coastal flooding,which depends on the ability to predict tidal level.Tidal duration asymmetry(TDA)is a key parameter in determination of the arrival and duration of flood tides.This study selected the western inner shelf of the Yellow Sea(WYS)as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise.The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely.In the nearshore area,the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection,bottom friction,and advection,which controlled the energy transfer from M2 or S2 constituents to their overtides or compound tides.The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf.The vulnerability of tidal responses was due to the displacement of the M2 amphidrome of the Kelvin wave on the WYS,which in turn changed tidal energy fluxes over the regime.The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation.展开更多
China has the largest area of inland geological phosphorus-rich(GPR) mountains in the world, where vegetation restoration is key to safeguarding the environment. We reviewed the published literature and collected new ...China has the largest area of inland geological phosphorus-rich(GPR) mountains in the world, where vegetation restoration is key to safeguarding the environment. We reviewed the published literature and collected new data in order to analyze re-vegetation patterns and the status of plant communities in central Yunnan. The aim of our analysis was to suggest future improvements to restoration strategies in GPR mountain regions. Our results showed that spontaneous recovery was the most widespread type of restoration. N-fixing species such as Coriaria nepalensis and Alnus nepalensis play a vital role in succession. In the past, monoculture tree plantation was the primary method used in afforestation activities in central Yunnan; in recent years however, several different methods of restoration have been introduced including the use of agroforestry systems. For practical restoration, we found that spontaneous recovery was capable of delivering the best results, but that during its early stages, restoration results were affected by several factors including erosion risk, the origin of propagates and environmental variation. In contrast, methods employing human-made communities performed better in their early stages, but were constrained by higher costs and vulnerability to degradation and erosion. The use of N-fixing species such as A. nepalensis and Acacia mearnsii in plantations were unsuccessful in restoring full ecosystem functions. The success of restoration activities in GPR mountain regions could be improved through the following measures:(1) developing a better understanding of the respective advantages and disadvantages of current natural and human-engineered restoration approaches;(2) elucidating the feedback mechanism between phosphorus-rich soil and species selected for restoration, especially N-fixing species;(3) introducing market incentives aimed at encouraging specific restoration activities such as agroforestry, and improving the industry value chain.展开更多
In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with veget...In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with vegetation restoration in this region are poorly understood. This study examined the changes of carbon stocks in mineral soil (0-100 cm), plant biomass and the ecosystem (plant and soil) following vegetation restoration with different models and ages. Our results indicated that cultivated land returned to native vegetation (natural restoration) or artificial forest increased ecosystem carbon sequestration. Tree plantation sequestered more carbon than natural vegetation succession over decades scale due to the rapid increase in biomass carbon pool. Restoration ages had different effects on the dynamics of biomass and soil carbon stocks. Biomass carbon stocks increased with vegetation restoration age, while the dynamics of soil carbon stocks were affected by sampling depth. Ecosystem carbon stocks consistently increased after tree plantation regardless of the soil depth; but an initial decrease and then increase trend was observed in natural restoration chronosequences with the soil sampling depth of 0-100 cm. Moreover, there was a time lag of about 15-30 years between biomass production and soil carbon sequestration in 0-100 cm, which indicated a long-term effect of vegetation restoration on deeper soil carbon sequestration.展开更多
Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes...Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes. Previous studies have focused heavily on the relationship between substrate nutrients and water conditions and the development of mosses on the rock surface, but quantitative characterization of substantial effect of rock surface texture(e.g., microrelief) on moss growth is absent. The undulating microrelief on the rock surface can increase the heterogeneity of the microhabitat, which may be an important factor affecting the development of mossdominated biocrusts. In this study, the roughness of rock surfaces, moss coverage and biomass, weight and major nutrient contents of soils within the biocrusts were measured in the western mountainous area of Sichuan Province, Southwest China to further examine the role of rock surface microrelief in the biocrusts. The results showed that three main factors affecting the development of the biocrusts were bryophyte emergence, soil accumulation, and lithology. The presence of moss accelerates soil formation on rock surfaces and lead to the accumulation of nutrients so that all parts of the moss-dominated biocrusts system can develop synergistically. It was found that a microrelief structure with a roughness between 1.5 and 2.5 could gather soil and bryophyte propagules effectively, which may have a strong relationship with the angle of repose. When the roughness is 1.5, the corresponding undulation angle is very close to the theoretical minimum value of the undulation angle calculated according to the relationships between the undulation angle of the protrusion, slope and angle of repose.展开更多
Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff...Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions.展开更多
Biological nitrogen fixing is an important source of nitrogen input in the natural ecological restoration of mine wastelands. The diversity of nifH genes in railings samples under different plant communities in Yangsh...Biological nitrogen fixing is an important source of nitrogen input in the natural ecological restoration of mine wastelands. The diversity of nifH genes in railings samples under different plant communities in Yangshanchong and Tongguanshan wastelands in Tongling, was analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach. The nitrogen-fixing microorganism community in the upper layer of tailings of Tongguanshan wasteland discarded in 1980 showed higher Shannon-Wiener diversity index than that in Yangshanchong wasteland discarded in 1991. The diversity of nifH genes in Yangshanchong wasteland of copper mine tailings did not display a consistent successional tendency with development of plant communities during the process of natural ecological restoration. Phylogenetic analysis of 25 sequences of nifH gene fragments retrieved from the DGGE gels indicated that there were mainly two taxa of free-living nitrogen-fixing microorganisms, Proteobacteria and Cyanobacteria living in the wastelands investigated, most of which were unique and uncultured. Canonical correspondence analysis (CCA) based on the relationship between band patterns of DGGE profile and physico-chemical properties of railings samples showed that the diversity of nifH genes in different tailing samples was mainly affected by loss of ignition, water content, pH and available Zn contents of wastelands. The dominant plant species and development period of plant communities by ameliorating pH, reducing the toxicity of heavy metals, increasing organic matter and water content affected the diversity and structure of the free-living nitrogenfixing microorganisms in wastelands of copper mine tailings.展开更多
基金funded by the National Nature Science Fund Project (30060021)the Fund Project of the Shapotou Station of Desert Research,Chinese Academy of Science (No.200014).
文摘Soil microbiotic crusts cover extensive portions of the arid and semiarid regions of the world and play an important ecological role.Moss is one of the major components in the crusts.The reproduction and establishment of the mosses are crucial to the formation of moss crusts.Bryum argenteum is the dominant species of moss crusts in the Shapotou region(104°57′E,37°27′N)of the Tengger Desert.In search for the characteristics of natural reproduction and establishment of the mosses,10 quadrates(10×10 cm for each)were obtained by removing the moss crusts in different positions of fixed dunes.These 10 quadrates were observed for 3 years depending on the species’components and coverage.Meanwhile,in the third year,two quadrates(1×1 m for each)were set up in a crustabsent area and two different experiments of the asexual reproduction(broadcast planting and offshoots)were conducted,respectively.The reproductive process was observed under the microscope,and the morphological indicators of the new individuals were measured.The results were compared with the ones from indoor experiments using the same methods.All the results showed the following:(1)70%of the quadrates(i.e.,7 of the 10 quadrates)were recovered within 3–4 years;thus,the quick recovery might be due to the dispersal and reproduction of the fragments of stems and leaves of B.argenteum;(2)as for the two quadrates in the artificial reproduction test,the new plants occupied the uncovered space of the quadrates in 1 month,and there were two main reproduction approaches,one of which was that the stems continually branched and produced young plants,and the other was that the young plants and the fragments of the stems and leaves repeatedly and extensively reproduced protonema,which finally developed into a large number of new plants;(3)the reproductive characteristics were identical,though the protonema in the field was more robust and had more branches than the ones indoors.
基金supported by the Joint Foundation of the Ministry of Education(Grant No.8091B022123)the Water Science and Technology Project of Jiangsu Province(Grant No.2022023)+1 种基金the Project of the Key Technologies of Port Engineering Construction under Medium and Long Period Wave Conditions(Grant No.ZJ2015-1)the Open Funding from the Key Laboratory of Port,Waterway and Sedimentation Engineering of the Ministry of Communications in 2023(Grant No.Yk223001-3).
文摘Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is the resilience to coastal flooding,which depends on the ability to predict tidal level.Tidal duration asymmetry(TDA)is a key parameter in determination of the arrival and duration of flood tides.This study selected the western inner shelf of the Yellow Sea(WYS)as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise.The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely.In the nearshore area,the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection,bottom friction,and advection,which controlled the energy transfer from M2 or S2 constituents to their overtides or compound tides.The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf.The vulnerability of tidal responses was due to the displacement of the M2 amphidrome of the Kelvin wave on the WYS,which in turn changed tidal energy fluxes over the regime.The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation.
基金the support of the Chinese Academy of Sciences' Frontier Science Key Project (QYZDY-SSWSMC014)The Federal Ministry for Economic Cooperation and Development, Germany(#13.1432.7-001.00)Project funded by Yunnan Postdoctoral Science Foundation (Y732081261)
文摘China has the largest area of inland geological phosphorus-rich(GPR) mountains in the world, where vegetation restoration is key to safeguarding the environment. We reviewed the published literature and collected new data in order to analyze re-vegetation patterns and the status of plant communities in central Yunnan. The aim of our analysis was to suggest future improvements to restoration strategies in GPR mountain regions. Our results showed that spontaneous recovery was the most widespread type of restoration. N-fixing species such as Coriaria nepalensis and Alnus nepalensis play a vital role in succession. In the past, monoculture tree plantation was the primary method used in afforestation activities in central Yunnan; in recent years however, several different methods of restoration have been introduced including the use of agroforestry systems. For practical restoration, we found that spontaneous recovery was capable of delivering the best results, but that during its early stages, restoration results were affected by several factors including erosion risk, the origin of propagates and environmental variation. In contrast, methods employing human-made communities performed better in their early stages, but were constrained by higher costs and vulnerability to degradation and erosion. The use of N-fixing species such as A. nepalensis and Acacia mearnsii in plantations were unsuccessful in restoring full ecosystem functions. The success of restoration activities in GPR mountain regions could be improved through the following measures:(1) developing a better understanding of the respective advantages and disadvantages of current natural and human-engineered restoration approaches;(2) elucidating the feedback mechanism between phosphorus-rich soil and species selected for restoration, especially N-fixing species;(3) introducing market incentives aimed at encouraging specific restoration activities such as agroforestry, and improving the industry value chain.
基金funded by the National Natural Science Foundation of China(4130161041501094+3 种基金41330858)the Key Research Program of the Chinese Academy of Sciences(KZZD-EW-04)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ5170)the open foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(A318009902-1510)
文摘In the last few decades, the Loess Plateau had experienced an extensive vegetation restoration to reduce soil erosion and to improve the degraded ecosystems. However, the dynamics of ecosystem carbon stocks with vegetation restoration in this region are poorly understood. This study examined the changes of carbon stocks in mineral soil (0-100 cm), plant biomass and the ecosystem (plant and soil) following vegetation restoration with different models and ages. Our results indicated that cultivated land returned to native vegetation (natural restoration) or artificial forest increased ecosystem carbon sequestration. Tree plantation sequestered more carbon than natural vegetation succession over decades scale due to the rapid increase in biomass carbon pool. Restoration ages had different effects on the dynamics of biomass and soil carbon stocks. Biomass carbon stocks increased with vegetation restoration age, while the dynamics of soil carbon stocks were affected by sampling depth. Ecosystem carbon stocks consistently increased after tree plantation regardless of the soil depth; but an initial decrease and then increase trend was observed in natural restoration chronosequences with the soil sampling depth of 0-100 cm. Moreover, there was a time lag of about 15-30 years between biomass production and soil carbon sequestration in 0-100 cm, which indicated a long-term effect of vegetation restoration on deeper soil carbon sequestration.
基金supported by the Project of Assessment on Post-quake Ecosystem and Environment Recovery in Jiuzhaigou under Grant 5132202020000046the National Key Research and Development Programme of China under Grant 2017YFC0504902。
文摘Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes. Previous studies have focused heavily on the relationship between substrate nutrients and water conditions and the development of mosses on the rock surface, but quantitative characterization of substantial effect of rock surface texture(e.g., microrelief) on moss growth is absent. The undulating microrelief on the rock surface can increase the heterogeneity of the microhabitat, which may be an important factor affecting the development of mossdominated biocrusts. In this study, the roughness of rock surfaces, moss coverage and biomass, weight and major nutrient contents of soils within the biocrusts were measured in the western mountainous area of Sichuan Province, Southwest China to further examine the role of rock surface microrelief in the biocrusts. The results showed that three main factors affecting the development of the biocrusts were bryophyte emergence, soil accumulation, and lithology. The presence of moss accelerates soil formation on rock surfaces and lead to the accumulation of nutrients so that all parts of the moss-dominated biocrusts system can develop synergistically. It was found that a microrelief structure with a roughness between 1.5 and 2.5 could gather soil and bryophyte propagules effectively, which may have a strong relationship with the angle of repose. When the roughness is 1.5, the corresponding undulation angle is very close to the theoretical minimum value of the undulation angle calculated according to the relationships between the undulation angle of the protrusion, slope and angle of repose.
基金Project supported by the Chinese Academy of Sciences (No. KZCX3-SW-422) and the National Natural Science Foundation of China (Nos. 9032001 and 40335050).
文摘Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions.
基金supported by the Anhui Science & Technology Department (No. 070415208)the Ministryof Science and Technology of the People’s Republic of China (No. 2006AA06Z359)
文摘Biological nitrogen fixing is an important source of nitrogen input in the natural ecological restoration of mine wastelands. The diversity of nifH genes in railings samples under different plant communities in Yangshanchong and Tongguanshan wastelands in Tongling, was analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach. The nitrogen-fixing microorganism community in the upper layer of tailings of Tongguanshan wasteland discarded in 1980 showed higher Shannon-Wiener diversity index than that in Yangshanchong wasteland discarded in 1991. The diversity of nifH genes in Yangshanchong wasteland of copper mine tailings did not display a consistent successional tendency with development of plant communities during the process of natural ecological restoration. Phylogenetic analysis of 25 sequences of nifH gene fragments retrieved from the DGGE gels indicated that there were mainly two taxa of free-living nitrogen-fixing microorganisms, Proteobacteria and Cyanobacteria living in the wastelands investigated, most of which were unique and uncultured. Canonical correspondence analysis (CCA) based on the relationship between band patterns of DGGE profile and physico-chemical properties of railings samples showed that the diversity of nifH genes in different tailing samples was mainly affected by loss of ignition, water content, pH and available Zn contents of wastelands. The dominant plant species and development period of plant communities by ameliorating pH, reducing the toxicity of heavy metals, increasing organic matter and water content affected the diversity and structure of the free-living nitrogenfixing microorganisms in wastelands of copper mine tailings.