期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
大学生绿色网络学习环境的构建研究 被引量:2
1
作者 陈然 杨成 《江苏开放大学学报》 2014年第3期27-32,共6页
当前大学生网络学习环境存在一定问题,而绿色网络学习环境为促进大学生网络学习环境的良性发展提供了新的途径和方法,对促进大学生成长和发展具有重要作用。基于"绿色学习"理论为基础的"绿色网络学习环境"应对其概... 当前大学生网络学习环境存在一定问题,而绿色网络学习环境为促进大学生网络学习环境的良性发展提供了新的途径和方法,对促进大学生成长和发展具有重要作用。基于"绿色学习"理论为基础的"绿色网络学习环境"应对其概念及组成要素做出理论界定,研究其构建的原则和模型,弥补当前大学生网络学习环境出现的问题,促进有意义网络学习的开展。 展开更多
关键词 绿色学习 绿色网络学习环境 大学生 有意义学习
下载PDF
互联、灵活且意义非凡:设计智慧城市的正确方式 被引量:4
2
作者 孟宁 《风景园林》 2020年第5期41-51,共11页
未来城市基金会(Future City Foundation)和26个合作伙伴致力于研究如何设计智慧城市。该组织网络假定城市设计及其产物正在发生根本性的变化,就像其他行业一样;并试图了解智慧城市的运行机理、未来机遇及风险。研究结果如《智慧城市,... 未来城市基金会(Future City Foundation)和26个合作伙伴致力于研究如何设计智慧城市。该组织网络假定城市设计及其产物正在发生根本性的变化,就像其他行业一样;并试图了解智慧城市的运行机理、未来机遇及风险。研究结果如《智慧城市,我们要这样做-互联、灵活且有意义:打造真正的未来城市》一书所示,重点关注智慧城市设计的4个设计原则:追求一个可持续发展和民主的城市;在其中以智能网络的方式进行设计;设计具有灵活性;进行有意义的设计。 展开更多
关键词 智慧城市 城市设计 规划原则 设计原则 网络 灵活性 意义
下载PDF
网络学习空间中学习者交互评估研究 被引量:5
3
作者 梁云真 《现代教育技术》 CSSCI 北大核心 2018年第11期73-79,共7页
文章基于网络学习空间中的交互系统,建构了二维度多层次的交互评估框架。以此为理论指导,文章采用问题解决过程的五阶段编码框架和知识建构水平编码框架,对参与"视觉信息设计"课程的28名学习者一个学期的交互数据进行了问题... 文章基于网络学习空间中的交互系统,建构了二维度多层次的交互评估框架。以此为理论指导,文章采用问题解决过程的五阶段编码框架和知识建构水平编码框架,对参与"视觉信息设计"课程的28名学习者一个学期的交互数据进行了问题解决行为模式和知识建构行为模式分析,结果发现:交互中的问题解决行为多集中于已有方案的对比辩论、提供可能的解决方案或相关信息两个方面;交互中的知识建构行为多集中于认知冲突、分享与澄清、意义协商三个阶段;问题解决行为模式、知识建构行为模式均对学习成绩有显著正向影响。研究学习者的交互行为模式,可为网络学习空间中学习者的交互评估提供精准诊断与策略支持。 展开更多
关键词 网络学习空间 学习者交互评估 有意义交互 知识建构
下载PDF
Ensemble Prediction of Monsoon Index with a Genetic Neural Network Model
4
作者 姚才 金龙 赵华生 《Acta meteorologica Sinica》 SCIE 2009年第6期701-712,共12页
After the consideration of the nonlinear nature changes of monsoon index,and the subjective determination of network structure in traditional artificial neural network prediction modeling,monthly and seasonal monsoon ... After the consideration of the nonlinear nature changes of monsoon index,and the subjective determination of network structure in traditional artificial neural network prediction modeling,monthly and seasonal monsoon intensity index prediction is studied in this paper by using nonlinear genetic neural network ensemble prediction(GNNEP)modeling.It differs from traditional prediction modeling in the following aspects: (1)Input factors of the GNNEP model of monsoon index were selected from a large quantity of preceding period high correlation factors,such as monthly sea temperature fields,monthly 500-hPa air temperature fields,monthly 200-hPa geopotential height fields,etc.,and they were also highly information-condensed and system dimensionality-reduced by using the empirical orthogonal function(EOF)method,which effectively condensed the useful information of predictors and therefore controlled the size of network structure of the GNNEP model.(2)In the input design of the GNNEP model,a mean generating function(MGF)series of predictand(monsoon index)was added as an input factor;the contrast analysis of results of predic- tion experiments by a physical variable predictor-predictand MGF GNNEP model and a physical variable predictor GNNEP model shows that the incorporation of the periodical variation of predictand(monsoon index)is very effective in improving the prediction of monsoon index.(3)Different from the traditional neural network modeling,the GNNEP modeling is able to objectively determine the network structure of the GNNNEP model,and the model constructed has a better generalization capability.In the case of identical predictors,prediction modeling samples,and independent prediction samples,the prediction accuracy of our GNNEP model combined with the system dimensionality reduction technique of predictors is clearly higher than that of the traditional stepwise regression model using the traditional treatment technique of predictors,suggesting that the GNNEP model opens up a vast range of possibilities for operational weather prediction. 展开更多
关键词 monsoon index ensemble prediction genetic algorithm neural network mean generating function
原文传递
Layer-wise domain correction for unsupervised domain adaptation 被引量:1
5
作者 Shuang LI Shi-ji SONG Cheng WU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第1期91-103,共13页
Deep neural networks have been successfully applied to numerous machine learning tasks because of their impressive feature abstraction capabilities.However,conventional deep networks assume that the training and test ... Deep neural networks have been successfully applied to numerous machine learning tasks because of their impressive feature abstraction capabilities.However,conventional deep networks assume that the training and test data are sampled from the same distribution,and this assumption is often violated in real-world scenarios.To address the domain shift or data bias problems,we introduce layer-wise domain correction(LDC),a new unsupervised domain adaptation algorithm which adapts an existing deep network through additive correction layers spaced throughout the network.Through the additive layers,the representations of source and target domains can be perfectly aligned.The corrections that are trained via maximum mean discrepancy,adapt to the target domain while increasing the representational capacity of the network.LDC requires no target labels,achieves state-of-the-art performance across several adaptation benchmarks,and requires significantly less training time than existing adaptation methods. 展开更多
关键词 Unsupervised domain adaptation Maximum mean discrepancy Residual network Deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部