The buildup of oxygen in the Earth's atmosphere and oceans has fundamentally reshaped the dynamics of nearly all major biogeochemical cycles and ultimately paved the way for the diversification of complex life on Ear...The buildup of oxygen in the Earth's atmosphere and oceans has fundamentally reshaped the dynamics of nearly all major biogeochemical cycles and ultimately paved the way for the diversification of complex life on Earth. Over the past decades there have been sustained efforts to develop a more comprehensive understanding of ocean-atmosphere redox evolution and its relationship to the evolution of early life (Fig. 1). It is generally accepted that the development of oxygenic photosynthesis at ~2.7 Ga may have been responsible for the Great Oxidation Event (GOE) at the beginning of the Proterozoic Eon, whereas a second big O2 rise at the end of the Proterozoic Eon (the so-called Neoproterozoic Oxidation Event or NOE) was responsible for the diversification of metazoans (Lyons et al., 2014).展开更多
The finding that adult neurogenesis occurs constitutively in the brain was a breakthrough in neuroscience and soon gained attention as a possible mechanism for neurorepair after brain damage. In a recent study we show...The finding that adult neurogenesis occurs constitutively in the brain was a breakthrough in neuroscience and soon gained attention as a possible mechanism for neurorepair after brain damage. In a recent study we show that the dentate gyrus (DG) reorganizes anatomically over neurons undergo maturation time after damage, while new and activate in response to a contextual fear memory recall (Aguilar-Arredondo and Zepeda, 2018). These findings provide new evidence on the possible role of neurogenesis in cognitive recovery after brain injury.展开更多
文摘The buildup of oxygen in the Earth's atmosphere and oceans has fundamentally reshaped the dynamics of nearly all major biogeochemical cycles and ultimately paved the way for the diversification of complex life on Earth. Over the past decades there have been sustained efforts to develop a more comprehensive understanding of ocean-atmosphere redox evolution and its relationship to the evolution of early life (Fig. 1). It is generally accepted that the development of oxygenic photosynthesis at ~2.7 Ga may have been responsible for the Great Oxidation Event (GOE) at the beginning of the Proterozoic Eon, whereas a second big O2 rise at the end of the Proterozoic Eon (the so-called Neoproterozoic Oxidation Event or NOE) was responsible for the diversification of metazoans (Lyons et al., 2014).
基金supported by Consejo Nacional de Ciencia y Tecnología(CONACyT)282470(to AZ)
文摘The finding that adult neurogenesis occurs constitutively in the brain was a breakthrough in neuroscience and soon gained attention as a possible mechanism for neurorepair after brain damage. In a recent study we show that the dentate gyrus (DG) reorganizes anatomically over neurons undergo maturation time after damage, while new and activate in response to a contextual fear memory recall (Aguilar-Arredondo and Zepeda, 2018). These findings provide new evidence on the possible role of neurogenesis in cognitive recovery after brain injury.