期刊文献+
共找到1,243篇文章
< 1 2 63 >
每页显示 20 50 100
Natural vibration and critical velocity of translating Timoshenko beam with non-homogeneous boundaries
1
作者 Yanan LI Jieyu DING +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1523-1538,共16页
In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,... In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries. 展开更多
关键词 translating beam Timoshenko beam non-homogeneous boundary natural frequency critical velocity
下载PDF
Rock critical porosity inversion and S-wave velocity prediction 被引量:3
2
作者 张佳佳 李宏兵 姚逢昌 《Applied Geophysics》 SCIE CSCD 2012年第1期57-64,116,共9页
A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical po... A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy. 展开更多
关键词 Gassmann's equations dry frame critical porosity critical porosity model S-wave velocity prediction
下载PDF
The Outer-Performance Distortion of the Suspension Shock Absorber and Its Critical Velocity
3
作者 俞德孚 傅瞾 《Journal of Beijing Institute of Technology》 EI CAS 1995年第2期206+198-206,共10页
On the basis of analysing the outer performance degradation of shock absorber on suspenson and from the relationship between outer and inner performances of the shock absorber, an internal relationship between the str... On the basis of analysing the outer performance degradation of shock absorber on suspenson and from the relationship between outer and inner performances of the shock absorber, an internal relationship between the structure design and degradation of the shock absorber is discussed in the paper. From dynamic property, analysed the dynamic cause for degradation, the paper proposes a technical method of improving outer performance and a concept of critical velocity, and discusses what effects the critical velocity and the outer performance mance degradation has. 展开更多
关键词 suspended structures DAMPERS critical velocity/suspension shock absorber DEGRADATION
下载PDF
A Novel Pre-control Method of Vehicle Dynamics Stability Based on Critical Stable Velocity during Transient Steering Maneuvering 被引量:9
4
作者 CHEN Jie SONG Jian +3 位作者 LI Liang RAN Xu JIA Gang WU Kaihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期475-485,共11页
The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lat... The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect. 展开更多
关键词 vehicle dynamics direct yaw moment control critical stable velocity pre-control
下载PDF
Numerical Experiments on Critical Ventilation Velocity and Back-layer in Tunnel Fire 被引量:3
5
作者 杨培中 金浩 +1 位作者 邵钢 金先龙 《Journal of Donghua University(English Edition)》 EI CAS 2006年第3期42-46,共5页
Full-scale numerical experiments were carried out on the vehicular fire in a long tunnel to study the critical ventilation velocity and back-layer distance with heat release rate of 5, 20 and 100 MW respectively. A co... Full-scale numerical experiments were carried out on the vehicular fire in a long tunnel to study the critical ventilation velocity and back-layer distance with heat release rate of 5, 20 and 100 MW respectively. A computational fluid dynamics (CFD) model of fire-driven fluid flow FDS(Fire Dynamics Simulator) was used to solve numerically a form of the Navier-Stokes equations for fire. The results were compared with the expressions proposed in the literature. A modified equation for the critical ventilation velocity was given to better fit the experimental results. A bi-exponential model that well fitted the numerical experimental results was proposed to describe the relationship between back-layer distance and ventilation velocity. 展开更多
关键词 tunnel fire critical ventilation velocity heatrelease rate back-layer hi-exponential model.
下载PDF
Critical velocity of sandwich cylindrical shell under moving internal pressure 被引量:1
6
作者 周加喜 邓子辰 侯秀慧 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1569-1578,共10页
Critical velocity of an infinite long sandwich shell under moving internal pressure is studied using the sandwich shell theory and elastodynamics theory. Propagation of axisymmetric free harmonic waves in the sandwich... Critical velocity of an infinite long sandwich shell under moving internal pressure is studied using the sandwich shell theory and elastodynamics theory. Propagation of axisymmetric free harmonic waves in the sandwich shell is studied using the sandwich shell theory by considering compressibility and transverse shear deformation of the core, and transverse shear deformation of face sheets. Based on the elastodynamics theory, displacement components expanded by Legendre polynomials, and position-dependent elastic constants and densities are introduced into the equations of motion. Critical velocity is the minimum phase velocity on the desperation relation curve obtained by using the two methods. Numerical examples and the finite element (FE) simulations are presented. The results show that the two critical velocities agree well with each other, and two desperation relation curves agree well with each other when the wave number k is relatively small. However, two limit phase velocities approach to the shear wave velocities of the face sheet and the core respectively when k limits to infinite. The two methods are efficient in the investigation of wave propagation in a sandwich cylindrical shell when k is relatively small. The critical velocity predicted in the FE simulations agrees with theoretical prediction. 展开更多
关键词 sandwich cylindrical shell critical velocity ELASTODYNAMICS Legendre polynomial
下载PDF
Experimental study of the critical sand starting velocity of gas-watersand flow in an inclined pipe 被引量:2
7
作者 Rui-Yao Zhang Jun Li +3 位作者 Hong-Wei Yang Geng Zhang Xi-Ning Hao Peng-Lin Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2981-2994,共14页
The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment sy... The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment system of gas-water-sand three-phase flow was used to test the conversion law of flow pattern based upon the different gas void fraction.Secondly,the influence of slug bubbles on sand migration was investigated according to distinctive hole deviation angles,gas void fraction and sand concentration.Finally,the critical sand starting velocity was tested based on dissimilar hole deviation angles,gas void fraction,sand concentration and sand particle size,and then the influence of the abovementioned key parameters on the sand starting velocity was debated based on the force analysis of the sand particles.The experimental results illustrated that when the gas void fraction was less than 5%,it was bubbly flow.When it increased from 5%to 30%,the bubbly flow and slug flow coexisted.When it was between 30%and 50%,the slug flow and agitated flow coexisted.When it reached 50%,it was agitated flow.Providing that the hole deviation angle was 90°,the phenomenon of overall migration and wavelike migration on the surface of sand bed was observed.On the contrary,the phenomenon of rolling and jumping migration was recognized.The critical sand starting velocity was positively correlated with the hole deviation angle and sand particle size,but negatively associated with the gas void fraction and sand concentration.This research can provide a certain reference for sand-starting production in the field of petroleum engineering. 展开更多
关键词 Three-phase flow critical sand starting velocity Flow pattern Sand migration Gas void fraction Hole deviation angles Sand concentration
下载PDF
The Influence of the Imperfectness of Contact Conditions on the Critical Velocity of the Moving Load Acting in the Interior of the Cylinder Surrounded with Elastic Medium 被引量:2
8
作者 M.Ozisik M.A.Mehdiyev S.D.Akbarov 《Computers, Materials & Continua》 SCIE EI 2018年第2期103-136,共34页
The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise hom... The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise homogeneous body model by employing the exact field equations of the linear theory of elastodynamics.It is assumed that the internal pressure is point-located with respect to the cylinder axis and is axisymmetric in the circumferential direction.Moreover,it is assumed that shear-spring type imperfect contact conditions on the interface between the cylinder and surrounding elastic medium are satisfied.The focus is on the influence of the mentioned imperfectness on the critical velocity of the moving load and this is the main contribution and difference of the present paper the related other ones.The other difference of the present work from the related other ones is the study of the response of the interface stresses to the load moving velocity,distribution of these stresses with respect to the axial coordinates and to the time.At the same time,the present work contains detail analyses of the influence of problem parameters such as the ratio of modulus of elasticity,the ratio of the cylinder thickness to the cylinder radius,and the shear-spring type parameter which characterizes the degree of the contact imperfection on the values of the critical velocity and stress distribution.Corresponding numerical results are presented and discussed.In particular,it is established that the values of the critical velocity of the moving pressure decrease with the external radius of the cylinder under constant thickness of that. 展开更多
关键词 Moving internal pressure critical velocity circular hollow cylinder surrounded by elastic medium shear-spring type imperfection interface stresses
下载PDF
Critical velocity and dynamic respondency of pipe conveying fluid
9
作者 王世忠 于石声 王东海 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第1期87-89,共3页
Presents the calculation of critical velocity, natural frequency and dynamic respondency of fluid conveying pipe are calculated under different boundary conditions using finite element method, and the use of calculati... Presents the calculation of critical velocity, natural frequency and dynamic respondency of fluid conveying pipe are calculated under different boundary conditions using finite element method, and the use of calculation results to design and research rocket pipes feeding fuel and watery turbine pipes conveying water etc. 展开更多
关键词 PIPE finite element method critical velocity natural frequency dynamic respondency
下载PDF
Aerodynamic unstable critical wind velocity for three-dimensionalopen cable-membrane structures
10
作者 魏德敏 朱美玲 李頔 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第3期277-284,共8页
The aerodynamic unstable critical wind velocity for three-dimensional open cable-membrane structures is investigated. The geometric nonlinearity is introduced into the dynamic equilibrium equations of structures. The ... The aerodynamic unstable critical wind velocity for three-dimensional open cable-membrane structures is investigated. The geometric nonlinearity is introduced into the dynamic equilibrium equations of structures. The disturbances on the structural surface caused by the air flow are simulated by a vortex layer with infinite thickness in the structures. The unsteady Bernoulli equation and the circulation theorem are applied in order to express the aerodynamic pressure as the function of the vortex density. The vortex density is then obtained with the vortex lattice method considering the coupling boundary condition. From the analytical expressions of the unstable critical wind velocities, numerical results and some useful conclusions are obtained. It is found that the initial curvature of open cable-membrane structures has clear influence on the critical wind velocities of the structures. 展开更多
关键词 open cable-membrane structure critical wind velocity vortex lattice method
下载PDF
A new model for predicting the critical liquid-carrying velocity in inclined gas wells
11
作者 WANG Wujie CUI Guomin +1 位作者 WEI Yaoqi PAN Jie 《Petroleum Exploration and Development》 CSCD 2021年第5期1218-1226,共9页
Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wa... Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells. 展开更多
关键词 inclined gas well gas-liquid phase distribution interfacial friction factor critical liquid-carrying velocity bottom-hole liquid loading
下载PDF
On the energy conservation and critical velocities for the propagation of a "steady-shock" wave in a bar made of cellular material 被引量:8
12
作者 Li-Li Wang Li-Ming Yang Yuan-Yuan Ding 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第3期420-428,共9页
The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L... The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L) model and the dynamic rigid, linear hardening plastic, locking (D-R-LHP-L) model, both considering the effects of strain-rate on the material properties. The shock wave speed relevant to these two models is derived. Consider the case of a bar made of one of such material with initial length L 0 and initial velocity v i impinging onto a rigid target. The variations of the stress, strain, particle velocity, specific internal energy across the shock wave and the cease distance of shock wave are all determined analytically. In particular the "energy conservation condition" and the "kinematic existence condition" as proposed by Tan et al. (2005) is re-examined, showing that the "energy conservation condition" and the consequent "critical velocity", i.e. the shock can only be generated and sustained in R-PP-L bars when the impact velocity is above this critical velocity, is incorrect. Instead, with elastic deformation, strain-hardening and strain-rate sensitivity of the cellular materials being considered, it is appropriate to redefine a first and a second critical impact velocity for the existence and propagation of shock waves in cellular solids. Starting from the basic relations for shock wave propagating in D-R-LHP-L cellular materials, a new method for inversely determining the dynamic stress-strain curve for cellular materials is proposed. By using e.g. a combination of Taylor bar and Hopkinson pressure bar impact experimental technique, the dynamic stress-strain curve of aluminum foam could bedetermined. Finally, it is demonstrated that this new formulation of shock theory in this one-dimensional stress state can be generalized to shocks in a one-dimensional strain state, i.e. for the case of plate impact on cellular materials, by simply making proper replacements of the elastic and plastic constants. 展开更多
关键词 Cellular solids 1D shock theory D-R-PP-L model D-R-SHP-L model Energy conservation across shock critical velocities
下载PDF
High Velocity Impact Experiment on Ti/CFRP/Ti Sandwich Structure 被引量:2
13
作者 还大军 丁冰 +1 位作者 李勇 肖军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期121-127,共7页
Aircraft laminated composite components often suffer a variety of high velocity impacts with large quantity of energy,which usually affects aircraft behavior and would incur component damages,even disastrous consequen... Aircraft laminated composite components often suffer a variety of high velocity impacts with large quantity of energy,which usually affects aircraft behavior and would incur component damages,even disastrous consequences.Therefore,one investigates the impact resistance of a new type of composite material,Ti/CFRP/Ti sandwich structure,and launches impact tests by using an air gun test system.Then one acquires the critical breakthrough rate of the structure and analyzes the damages.The results show that the main failure mode of the front titanium sheet is shear plugging and brittle fracture of adhesive layer with fiber breakage,while the back titanium sheet is severely ripped.The rear damage is worse than the front one.Compared with traditional CFRP laminates,the critical breakthrough rate of Ti/CFRP/Ti sandwich structure is improved by 69.9% when suffered the impact of a bearing ball with 2mm radius. 展开更多
关键词 Ti/CFRP/Ti sandwich structure high velocity impact critical velocity damage mode
下载PDF
Face stability of shield tunnels considering a kinematically admissible velocity field of soil arching 被引量:5
14
作者 Wei Li Chengping Zhang +2 位作者 Dingli Zhang Zijian Ye Zhibiao Tan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期505-526,共22页
Existing mechanism of simulating soil movement at tunnel face is generally based on the translational or rotational velocity field,which is,to some extent,different from the real soil movement in the arching zone.Nume... Existing mechanism of simulating soil movement at tunnel face is generally based on the translational or rotational velocity field,which is,to some extent,different from the real soil movement in the arching zone.Numerical simulations are carried out first to investigate the characteristics of the velocity distribution at tunnel face and above tunnel vault.Then a new kinematically admissible velocity field is proposed to improve the description of the soil movement according to the results of the numerical simulation.Based on the proposed velocity field,an improved failure mechanism is constructed adopting the spatial discretization technique,which takes into account soil arching effect and plastic deformation within soil mass.Finally,the critical face pressure and the proposed mechanism are compared with the results of the numerical simulation,existing analytical studies and experimental tests to verify the accuracy and improvement of the presented method.The proposed mechanism can serve as an alternative approach for the face stability analysis. 展开更多
关键词 Tunnel face stability velocity field Failure pattern Improved failure mechanism critical face pressure
下载PDF
Research on the Critical Conditions for Clay Particle Release During Saline Aquifer Freshening Process 被引量:2
15
作者 ZHENG Xilai CHEN Ran 《Journal of Ocean University of China》 SCIE CAS 2014年第4期628-636,共9页
Water sensitivity phenomenon occurs during saline aquifer freshening process in seawater intrusion area, and clay particles released in the phenomenon can damage the infiltration capacity of the aquifer. In order to f... Water sensitivity phenomenon occurs during saline aquifer freshening process in seawater intrusion area, and clay particles released in the phenomenon can damage the infiltration capacity of the aquifer. In order to find out the factors and mechanisms for clay particle release, laboratory column infiltration experiments simulating saline aquifer freshening process were designed to measure the critical conditions(critical flow velocity, critical salt concentration and critical ionic strength) and force analysis for clay particle according to DLVO electric double layer theory was employed to illustrate the mechanisms for particle release. The research results showed that critical flow velocity for clay particle release is influenced by salt concentration of injecting solution. When salt concentration of injecting solution is very high, clay particles are not released, indicating that there does not exist a critical flow velocity in this situation. As salt concentration of injecting solution decreases, particles start to be released. The critical salt concentration for clay particle release is 0.052 mol L-1 in our work, which was determined by a constant-flux experiment for stepwise displacement of high concentration Na Cl solution. The critical ionic strength for clay particle release decreases as Ca2+ molar content percentage of the mixed solution of Na Cl and Ca Cl2 increases following the first-order exponential decay equation y = 0.0391e-0.266 x + 0.0015. 展开更多
关键词 seawater intrusion area clay particle release critical flow velocity critical salt concentration critical ionic strength
下载PDF
Shear velocity criterion for incipient motion of sediment 被引量:1
16
作者 Francisco J.M.SIMOES 《Water Science and Engineering》 EI CAS CSCD 2014年第2期183-193,共11页
The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or iden... The prediction of incipient motion has had great importance to the theory of sediment transport. The most commonly used methods are based on the concept of critical shear stress and employ an approach similar, or identical, to the Shields diagram. An alternative method that uses the movability number, defined as the ratio of the shear velocity to the particle's settling velocity, was employed in this study. A large amount of experimental data were used to develop an empirical incipient motion criterion based on the movability number. It is shown that this approach can provide a simple and accurate method of computing the threshold condition for sediment motion. 展开更多
关键词 incipient motion sediment transport Shields diagram critical shear stress criticalshear velocity movability number
下载PDF
Interactions in Aqueous Solution of a Zwitterionic Surfactant with a Water Treatment Protein from Moringa oleifera Seeds Studied by Surface Tension and Ultrasonic Velocity Measurements 被引量:1
17
作者 Habauka M. Kwaambwa Fiona M. Nermark 《Green and Sustainable Chemistry》 2013年第4期135-140,共6页
The interaction of a zwitterionic surfactant with the water treatment protein extracted from Moringa oleifera has been investigated by surface tension and ultrasonic velocity measurements. The critical micelle concent... The interaction of a zwitterionic surfactant with the water treatment protein extracted from Moringa oleifera has been investigated by surface tension and ultrasonic velocity measurements. The critical micelle concentration (CMC) of zwitterionic surfactant was determined to be 2.4 ± 0.3 mM by both techniques and the partial specific volume ν = 0.78 ± 0.06 cm3/g for the protein was found. There seems to be a mild interaction between the protein and the surfactant as shown by surface tension measurements. The ultrasonic velocity was found to decrease in the vicinity of the critical micelle concentration which may be due to micelle aggregates formation and the protein caused a shift of the surfactant’s CMC to a higher concentration. 展开更多
关键词 critical MICELLE Concentration Density Surface Tension Ultrasonic velocity ZWITTERIONIC Surfactant
下载PDF
The estimation of a critical shear stress based on a bottom tripod observation in the southwest off Jeju Island,the East China Sea
18
作者 ZHAO Liang XU Yajun YUAN Ye 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第11期105-112,共8页
The resuspension and deposition of sediment within a bottom boundary layer(BBL) is the main dynamic processes that control the fate of the suspended sediment in shelf seas.The numerical study of sediment transport p... The resuspension and deposition of sediment within a bottom boundary layer(BBL) is the main dynamic processes that control the fate of the suspended sediment in shelf seas.The numerical study of sediment transport patterns relies on the knowledge of some critical parameters that describe sediment erosion and deposition.A critical shear stress is estimated based on field observations at the edge of a mud area southwest off Jeju Island,the East China Sea.On the basis of the simultaneous observation of velocity and suspended sediment concentrations within the BBL by means of acoustic instruments including an acoustic Doppler velocimeter and an acoustic Doppler current profiler,the settling velocity is estimated by turbulent oscillations of the SSC under the assumption of inertial-dissipation balance.This method gives a mean value of 0.91 mm/s and standard deviation of 0.20 mm/s,which is an order of magnitude larger than the value obtained by an empirical method of Soulsby and by an in situ submersible particle size analyzer.The difference is possibly due to the distinct natures of two methodologies,the inertial-dissipation method is more indicative of the BBL dynamics and is thus believed to provide reasonable in situ estimates of the settling velocity,whereas Soulsby's method is usually suitable for still water.A novel method for estimating the critical stresses of erosion and deposition based on statistical analyses of the temporal variability of the SSC(which is defined as a derivative of the depth-averaged SSC with respect to time) and the corresponding bottom shear stress is proposed.Both critical stresses of erosion and deposition vary between 0.11 Pa and 0.25 Pa with corresponding median values of 0.20 Pa and 0.16 Pa,respectively,which confirms that the critical stresses of erosion is somewhat higher than the critical stresses of deposition.Another method of estimating the critical shear stress by means of the settling velocity is also employed,which yields reasonable critical shear stress values of 0.06-0.17 Pa. 展开更多
关键词 suspended sediment critical shear stress settling velocity East China Sea
下载PDF
Pride Model for Critical Porosity and Its Application
19
作者 Hou Bo Chen Xiaohong Zhang Xiaozhen 《石油地球物理勘探》 EI CSCD 北大核心 2012年第A02期114-118,共5页
关键词 石油 地球物理勘探 地质调查 油气资源
下载PDF
Effect of powder feeding rate and size on critical velocity and mechanical properties of cold sprayed Al_(2)O_(3)/2024 deposit
20
作者 Dong WU Jiaju ZHANG +4 位作者 Yu SU Wenya LI Yaxin XU Xiawei YANG Chunjie HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期544-559,共16页
The particle acceleration behavior and deposition mechanism of cold spraying aluminum matrix composites(Al_(2)O_(3)/2024)are complicated by the addition of ceramic particles.The effects of different feeding rates and ... The particle acceleration behavior and deposition mechanism of cold spraying aluminum matrix composites(Al_(2)O_(3)/2024)are complicated by the addition of ceramic particles.The effects of different feeding rates and particle diameters on critical velocity and mechanical properties were studied by numerical simulation and experiment.The results indicate that as the powder feeding rate increases,the impact velocity of gas and particles gradually decreases,and the temperature of gas and particles increases,resulting in an increase in the difference between particle impact velocity and critical velocity.The highest tensile strength of the deposit is achieved at a powder feeding rate of 1 r/min,which is 343 MPa.As the powder feeding rate increases,the performance of the deposits decreases,but it significantly saves time and cost.As the particle diameter increases,the impact temperature first increases and then decreases,resulting in the critical velocity first decreasing and then increasing,and the mechanical performance first increasing and then decreasing.To some extent,the best performance of the deposit is achieved when the size of the metal particle is close to that of the ceramic particle. 展开更多
关键词 Cold spray Aluminum matrix composites critical velocity Feeding rate Particle size Mechanical property
原文传递
上一页 1 2 63 下一页 到第
使用帮助 返回顶部