Non-metallic inclusions,especially the large ones,within P/M Ni-base superalloy have a major influence on fatigue characteristics,but are not directly measurable by routine inspection.In this paper,a method,automatic ...Non-metallic inclusions,especially the large ones,within P/M Ni-base superalloy have a major influence on fatigue characteristics,but are not directly measurable by routine inspection.In this paper,a method,automatic image analysis,is proposed for estimation of the content,size and amount of non-metallic inclusions in superalloy.The methodology for the practical application of this method is described and the factors affecting the precision of the estimation are discussed.In the experiment,the characteristics of the non-metallic inclusions in Ni-base P/M superalloy are analyzed.展开更多
For the control of surface defects in interstitial-free(IF) steel, quantitative metallographic analyses of near-surface inclusions and surface liquid flow detection via the nail-board tipping method were conducted. Th...For the control of surface defects in interstitial-free(IF) steel, quantitative metallographic analyses of near-surface inclusions and surface liquid flow detection via the nail-board tipping method were conducted. The results show that, at casting speeds of 0.8 and 1.0 m/min, a thin liquid mold flux layer forms and non-uniform floating of argon bubbles occurs, inducing the entrainment and subsequent entrapment of the liquid flux; fine inclusion particles of Al_2O_3 can also aggregate at the solidification front. At higher casting speeds of 1.4 and 1.6 m/min, the liquid mold flux can be entrained and carried deeper into the liquid steel pool because of strong level fluctuations of the liquid steel and the flux. The optimal casting speed is approximately 1.2 m/min, with the most favorable surface flow status and, correspondingly, the lowest number of inclusions near the slab surface.展开更多
Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent ye...Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.展开更多
Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time larg...Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions.展开更多
φ200 mm silicon single crystals were grown in the φ450 mm hot zone of a Czochralski (CZ) furnace. By modifying the pattern and the velocity of the argon flow, the silicon single crystals with different oxygen conc...φ200 mm silicon single crystals were grown in the φ450 mm hot zone of a Czochralski (CZ) furnace. By modifying the pattern and the velocity of the argon flow, the silicon single crystals with different oxygen concentrations were obtained. Through numerical simulation, the velocity of the argon gas flow was plotted for the first time. The experiment resuits were analyzed and the optimum condition of the argon flow with the lowest oxygen concentration was obtained.展开更多
Dear Editor,I write to present one case report of a patient suffered the panophthalmitis caused by non-metallic foreign body with no etiologic agent and recovered quickly by phacoemulsification and vitrectomy with sil...Dear Editor,I write to present one case report of a patient suffered the panophthalmitis caused by non-metallic foreign body with no etiologic agent and recovered quickly by phacoemulsification and vitrectomy with silicone oil tamponade.Ocular trauma remains a major cause of blindness, particularly in the working-age population.展开更多
In this paper, a kind of three-dimensional analysis technology for characterizing non-metallic inclusions in steel was clearly elaborated. It is an electron microscopy observation, namely the non-aqueous electrolysis ...In this paper, a kind of three-dimensional analysis technology for characterizing non-metallic inclusions in steel was clearly elaborated. It is an electron microscopy observation, namely the non-aqueous electrolysis extraction method with a settled coulometer. In the research,the extraction effects of non-metallic inclusions in different electrolysis systems were studied, and it was concluded that alkalescent 2% TEA non-aqueous electrolyte was applicable for extracting most of non-metallic inclusion particles in steel. And then, in order to ensure the microscopic characterization and statistical calculation of inclusion particles, some electrolysis parameters should be confirmed, such as the size of the sample, control of the electrolysis mass, electric current, etc. Furthermore, for preventing the disturbance of carbides and presenting clear three-dimensional appearance by microscopic characterization, magnetic separation was utilized to separate the inclusion particles from carbides, which was useful for getting more veracious types, particle sizes and chemical composition of inclusions. Moreover, through calculation of quantity and particle size of inclusions in continuous determinate fields, the total quantity per unit volume or area and the particle size distribution of inclusions could be acquired by conversion with electrolysis loss. Besides, the comparison between this method and traditional quantitative metallography was also discussed, and finally, a conclusion was drawn that both of them have respectively applications in characterizing inclusions.展开更多
In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The lar...In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The largest size of inclusions in the casting and the thermodynamic possibility of TiN precipitation in steel were also calculated. The results show that sulfide inclusions are evenly distributed and the content is low. The amount of oxide inclusions in CIESC: 4Cr5MoSiV1 steel is close to the ESR steel and lower than that in the EAF steel, and there are some differences along radial direction. Nitride inclusions are fine and the diameter of the largest one is 3-1 mum. With the increase of the centrifugal machine's rotational speed, the ratio of round inclusions increases and the ratio of sharp inclusions decreases. According to the experiment and the calculation results, it is pointed out that the largest diameter of non-metallic inclusions in the CIESC 4Cr5MoSiV1 casting is only 6.6 mum, and [N%][Ti%] in 4Cr5MoSiV1 steel should be controlled less than 4.4x 10(-5) in order to further reduce the amount and size of TiN inclusions.展开更多
In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Pro...In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Probe Microanalysis) and by analyzing the total oxygen. The results showed that in the slabs the total oxygen was quite low and the inclusions discovered were mainly small-sized angular alumina inclusions. This indicates that most inclusions have been removed by floating out during the continuous casting process. In addition, the countermeasures were discussed to decrease the alumina inclusions in the slabs further.展开更多
Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running...Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running into ultra-short radius horizontal well.Innovative hydraulic drive tools and string structure are designed,which are composed of guide tubing,hydraulic drive tubing and non-metallic completion screen pipe from inside to outside.A novel mechanical-hydraulic coupling model is established.Based on the wellbore structure of an ultra-short radius horizontal well for deep coalbed methane,the numerical calculations of force and hydraulic load on tubular strings were accomplished by the mechanical-hydraulic coupling model.The results show that the extending length of completion tubular string with the hydraulic drive is 17 times that of conventional completion technology under the same conditions.The multi-factor orthogonal design is adopted to analyze the numerical calculations,and the results show that the extending length of the completion tubular string is mainly affected by the completion tubular string structure and the friction coefficient between the non-metallic composite continuous screen pipe and the wellbore.Two series of hydraulic drive completion tubular string structures suitable for ultra-short radius horizontal wells under different conditions are optimized,with the extending limits of 381 m and 655 m,respectively.These researches will provide theoretical guidance for design and control of hydraulic drive non-metallic composite continuous completion screen pipe running into ultra-short radius horizontal wells.展开更多
Six different kinds of non-metallic or organic disinfectants were obtained in this research study including “Neutral Electrolyzed Water”, “M22” organic disinfectant solution, Superoxy Food Wash disinfectant, Hydro...Six different kinds of non-metallic or organic disinfectants were obtained in this research study including “Neutral Electrolyzed Water”, “M22” organic disinfectant solution, Superoxy Food Wash disinfectant, Hydrogen Peroxide, Clorox Germicidal Bleach and Clidox-S. The effectiveness of these disinfectants was studied against various subtypes of avian influenza virus (AIV). The virus-disinfectant mixtures were prepared in serial dilutions of each disinfectant with a constant virus titer and incubated at ambient temperature in different time intervals for virus inactivation. The virus inactivation results were determined by virus recovery in embryonating chicken eggs. Among the six different kinds of nonmetallic disinfectants obtained for this research project, Neutral Electrolyzed Water, “M22” solution, Clorox Germicidal Bleach and Clidox-S were effectively inactivated AIV with appropriate working dilutions and reaction times. Superoxy Food Wash disinfectant and Hydrogen Peroxide were found having limited effect on virus inactivation with extended exposure times of more than 2 hours. These research findings provide scientific data to poultry industry with guidelines to select and use non-metallic organic disinfectants for poultry flock sanitation and disinfection to effectively prevent and control of avian influenza outbreaks.展开更多
The expansion parts and components of non-metallic in devices have become a fait accompli. In the case parts, components of non-metallic are used in atmospheres explosive and may be a potential source of ignition [1]....The expansion parts and components of non-metallic in devices have become a fait accompli. In the case parts, components of non-metallic are used in atmospheres explosive and may be a potential source of ignition [1]. Ignition hazards due to static electricity from the charged non-conductive non-metallic materials are well known [2]. The prevalence protection metal parts and components of anti-corrosion exist in any device equipped with a metal casing. Inherent risks associated services are caused by static electricity. Electrostatic phenomena arise in many situations, in a variety of environments and industries. The occurrence of charge static in many cases unexpected is unwanted and requires the use of expensive preventive measures. Brush discharge and propagating brush discharge (e.g. composite coating about non-conductive electrostatic properties of an isolated base conductive) create explosion hazard in underground endangered by firedamp and/or coal dust [3].展开更多
Photocatalytic (PC) / Photoelectrochemical (PEC) water splitting under solar light irradiation is considered as a prospective technique to support the sustainable and renewable H_(2) economy and to reach the ultime go...Photocatalytic (PC) / Photoelectrochemical (PEC) water splitting under solar light irradiation is considered as a prospective technique to support the sustainable and renewable H_(2) economy and to reach the ultime goal of carbon neutral. TiO_(2) based photocatalysts with high chemical stability and excellent photocatalytic properties have great potential for solar-to-H_(2) conversion. To conquer the challenges of the large band-gap and rapid recombination of photo generated electron-holepairs in TiO_(2), non-metal doping turns out to be economic, facile, and effective on boosting the visible light activity. The localized defect states such as oxygen vacancy and Ti^(3+) generated by non-metal doping are located in the band-gap of TiO_(2), which result in the reduction of band-gap, thus a red-shift of the absorption edge. The hetero doping atoms such as B^(3+), I^(7+), S^(4+)/S^(6+), P^(5+) can also act as electron donors or trap sites which facilitate the charge carrier separation and suppress the recombination of electron-hole pairs. In this comprehensive review, we present the most recent advances on non-metal doped TiO_(2) photocatalysts in terms of fundamental aspects, origin of visible light activity and the PC / PEC behaviours for water splitting. In particular, the characteristics of different non-metal elements (N, C, B, S, P, Halogens) as dopants are discussed in details focusing on the synthesis approaches, characterization as well as the efficiency of PC and PEC water splitting. The present review aims at guiding the readers who want quick access to helpful information about how to efficiently improve the performance of photocatalysts by simple doping strategies and could stimulate new intuitive into the new doping strategies.展开更多
文摘Non-metallic inclusions,especially the large ones,within P/M Ni-base superalloy have a major influence on fatigue characteristics,but are not directly measurable by routine inspection.In this paper,a method,automatic image analysis,is proposed for estimation of the content,size and amount of non-metallic inclusions in superalloy.The methodology for the practical application of this method is described and the factors affecting the precision of the estimation are discussed.In the experiment,the characteristics of the non-metallic inclusions in Ni-base P/M superalloy are analyzed.
基金financially supported by the National Natural Science Foundation of China (No. 51674069)the National Key R & D Program of China (No. 2017YFC0805100)
文摘For the control of surface defects in interstitial-free(IF) steel, quantitative metallographic analyses of near-surface inclusions and surface liquid flow detection via the nail-board tipping method were conducted. The results show that, at casting speeds of 0.8 and 1.0 m/min, a thin liquid mold flux layer forms and non-uniform floating of argon bubbles occurs, inducing the entrainment and subsequent entrapment of the liquid flux; fine inclusion particles of Al_2O_3 can also aggregate at the solidification front. At higher casting speeds of 1.4 and 1.6 m/min, the liquid mold flux can be entrained and carried deeper into the liquid steel pool because of strong level fluctuations of the liquid steel and the flux. The optimal casting speed is approximately 1.2 m/min, with the most favorable surface flow status and, correspondingly, the lowest number of inclusions near the slab surface.
基金Supported by Downhole Intelligent Measurement and Control Science and Technology Innovation Team of Southwest Petroleum University(Grant No.2018CXTD04)National Natural Science Foundation of China(Grant Nos.61701085,51974273)+1 种基金Chengdu Municipal international science and technology cooperation project of China(Grant Nos.2020-GH02-00016-HZ)2020 National Mountain Highway Engineering Technology Research Center Open Fund Project(Grant No.GSGZJ-2020-01).
文摘Buried pipelines are an essential component of the urban infrastructure of modern cities.Traditional buried pipes are mainly made of metal materials.With the development of material science and technology in recent years,non-metallic pipes,such as plastic pipes,ceramic pipes,and concrete pipes,are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply,drainage,heat,industry,oil,and gas.The location technologies for the location of the buried metal pipeline have become mature,but detection and location technologies for the non-metallic pipelines are still developing.In this paper,current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized.Initially,this paper reviews and analyzes electromagnetic induction technologies,electromagnetic wave technologies,and other physics-based technologies.It then focuses on acoustic detection and location technologies,and finally introduces emerging technologies.Then the technical characteristics of each detection and location method have been compared,with their strengths and weaknesses identified.The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined.Finally,some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.
文摘Laboratory and industrial studies were carried out to investigate non-metallic inclusions in high strength alloy steel refined by high basicity and high Al_2O_3 slag.It was found that the steel/slag reaction time largely affected non-metallic inclusions.With the reaction time increased from 30 min to 90 min in laboratory study,MgO-Al_2O_3 spinels were gradually changed into CaO-MgO-Al_2O_3 system inclusions surrounded by softer CaO-Al_2O_3 surface layers.By using high basicity slag which contained as much as 41%Al_2O_3 in the laboratory study,ratio of low melting temperature CaO-MgO-Al_2O_3 system inclusions was remarkably increased to above 80%.In the industrial experiment,during the secondary refining,the inclusions changed in order of 'Al_2O_3→MgO-Al_2O_3→CaO-MgO-Al_2O_3'.Through the LF and RH refining,most inclusions could be transferred to lower melting temperature CaO-Al_2O_3 and CaO-MgO-Al_2O_3 system inclusions.
基金This project is financially supported by the National Natural Science Foundation of China (No. 60576002).
文摘φ200 mm silicon single crystals were grown in the φ450 mm hot zone of a Czochralski (CZ) furnace. By modifying the pattern and the velocity of the argon flow, the silicon single crystals with different oxygen concentrations were obtained. Through numerical simulation, the velocity of the argon gas flow was plotted for the first time. The experiment resuits were analyzed and the optimum condition of the argon flow with the lowest oxygen concentration was obtained.
基金Supported by Natural Science Foundation of China (No.81571819 No.81500766)the Natural Science Foundation of Zhejiang Province, China (No.LY14H120004)
文摘Dear Editor,I write to present one case report of a patient suffered the panophthalmitis caused by non-metallic foreign body with no etiologic agent and recovered quickly by phacoemulsification and vitrectomy with silicone oil tamponade.Ocular trauma remains a major cause of blindness, particularly in the working-age population.
文摘In this paper, a kind of three-dimensional analysis technology for characterizing non-metallic inclusions in steel was clearly elaborated. It is an electron microscopy observation, namely the non-aqueous electrolysis extraction method with a settled coulometer. In the research,the extraction effects of non-metallic inclusions in different electrolysis systems were studied, and it was concluded that alkalescent 2% TEA non-aqueous electrolyte was applicable for extracting most of non-metallic inclusion particles in steel. And then, in order to ensure the microscopic characterization and statistical calculation of inclusion particles, some electrolysis parameters should be confirmed, such as the size of the sample, control of the electrolysis mass, electric current, etc. Furthermore, for preventing the disturbance of carbides and presenting clear three-dimensional appearance by microscopic characterization, magnetic separation was utilized to separate the inclusion particles from carbides, which was useful for getting more veracious types, particle sizes and chemical composition of inclusions. Moreover, through calculation of quantity and particle size of inclusions in continuous determinate fields, the total quantity per unit volume or area and the particle size distribution of inclusions could be acquired by conversion with electrolysis loss. Besides, the comparison between this method and traditional quantitative metallography was also discussed, and finally, a conclusion was drawn that both of them have respectively applications in characterizing inclusions.
文摘In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The largest size of inclusions in the casting and the thermodynamic possibility of TiN precipitation in steel were also calculated. The results show that sulfide inclusions are evenly distributed and the content is low. The amount of oxide inclusions in CIESC: 4Cr5MoSiV1 steel is close to the ESR steel and lower than that in the EAF steel, and there are some differences along radial direction. Nitride inclusions are fine and the diameter of the largest one is 3-1 mum. With the increase of the centrifugal machine's rotational speed, the ratio of round inclusions increases and the ratio of sharp inclusions decreases. According to the experiment and the calculation results, it is pointed out that the largest diameter of non-metallic inclusions in the CIESC 4Cr5MoSiV1 casting is only 6.6 mum, and [N%][Ti%] in 4Cr5MoSiV1 steel should be controlled less than 4.4x 10(-5) in order to further reduce the amount and size of TiN inclusions.
文摘In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Probe Microanalysis) and by analyzing the total oxygen. The results showed that in the slabs the total oxygen was quite low and the inclusions discovered were mainly small-sized angular alumina inclusions. This indicates that most inclusions have been removed by floating out during the continuous casting process. In addition, the countermeasures were discussed to decrease the alumina inclusions in the slabs further.
基金Supported by the Innovative Research Group Project of China National Natural Science Foundation(51821092)Key Project of China National Natural Science Foundation(U1762214).
文摘Focusing on the extending length restriction of the completion screen pipe resistance running into ultra-short radius horizontal well,this paper proposed technology of hydraulic drive completion tubular string running into ultra-short radius horizontal well.Innovative hydraulic drive tools and string structure are designed,which are composed of guide tubing,hydraulic drive tubing and non-metallic completion screen pipe from inside to outside.A novel mechanical-hydraulic coupling model is established.Based on the wellbore structure of an ultra-short radius horizontal well for deep coalbed methane,the numerical calculations of force and hydraulic load on tubular strings were accomplished by the mechanical-hydraulic coupling model.The results show that the extending length of completion tubular string with the hydraulic drive is 17 times that of conventional completion technology under the same conditions.The multi-factor orthogonal design is adopted to analyze the numerical calculations,and the results show that the extending length of the completion tubular string is mainly affected by the completion tubular string structure and the friction coefficient between the non-metallic composite continuous screen pipe and the wellbore.Two series of hydraulic drive completion tubular string structures suitable for ultra-short radius horizontal wells under different conditions are optimized,with the extending limits of 381 m and 655 m,respectively.These researches will provide theoretical guidance for design and control of hydraulic drive non-metallic composite continuous completion screen pipe running into ultra-short radius horizontal wells.
文摘Six different kinds of non-metallic or organic disinfectants were obtained in this research study including “Neutral Electrolyzed Water”, “M22” organic disinfectant solution, Superoxy Food Wash disinfectant, Hydrogen Peroxide, Clorox Germicidal Bleach and Clidox-S. The effectiveness of these disinfectants was studied against various subtypes of avian influenza virus (AIV). The virus-disinfectant mixtures were prepared in serial dilutions of each disinfectant with a constant virus titer and incubated at ambient temperature in different time intervals for virus inactivation. The virus inactivation results were determined by virus recovery in embryonating chicken eggs. Among the six different kinds of nonmetallic disinfectants obtained for this research project, Neutral Electrolyzed Water, “M22” solution, Clorox Germicidal Bleach and Clidox-S were effectively inactivated AIV with appropriate working dilutions and reaction times. Superoxy Food Wash disinfectant and Hydrogen Peroxide were found having limited effect on virus inactivation with extended exposure times of more than 2 hours. These research findings provide scientific data to poultry industry with guidelines to select and use non-metallic organic disinfectants for poultry flock sanitation and disinfection to effectively prevent and control of avian influenza outbreaks.
文摘The expansion parts and components of non-metallic in devices have become a fait accompli. In the case parts, components of non-metallic are used in atmospheres explosive and may be a potential source of ignition [1]. Ignition hazards due to static electricity from the charged non-conductive non-metallic materials are well known [2]. The prevalence protection metal parts and components of anti-corrosion exist in any device equipped with a metal casing. Inherent risks associated services are caused by static electricity. Electrostatic phenomena arise in many situations, in a variety of environments and industries. The occurrence of charge static in many cases unexpected is unwanted and requires the use of expensive preventive measures. Brush discharge and propagating brush discharge (e.g. composite coating about non-conductive electrostatic properties of an isolated base conductive) create explosion hazard in underground endangered by firedamp and/or coal dust [3].
基金supported by the National Natural Science Foundation of China(U1663225,21805280 and 21805220)the Youth Innovation Foundation of Xiamen City:3502Z20206085+4 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R52)The Opening Project of PCOSS,Xiamen University,201907the program of introducing Talents of discipline to Universities-111 Project(Grant No.B20002)the project“Depollut Air”of Interreg V France-Wallonie-Vlaanderenthe financial support from the China Scholarship Council(CSC)。
文摘Photocatalytic (PC) / Photoelectrochemical (PEC) water splitting under solar light irradiation is considered as a prospective technique to support the sustainable and renewable H_(2) economy and to reach the ultime goal of carbon neutral. TiO_(2) based photocatalysts with high chemical stability and excellent photocatalytic properties have great potential for solar-to-H_(2) conversion. To conquer the challenges of the large band-gap and rapid recombination of photo generated electron-holepairs in TiO_(2), non-metal doping turns out to be economic, facile, and effective on boosting the visible light activity. The localized defect states such as oxygen vacancy and Ti^(3+) generated by non-metal doping are located in the band-gap of TiO_(2), which result in the reduction of band-gap, thus a red-shift of the absorption edge. The hetero doping atoms such as B^(3+), I^(7+), S^(4+)/S^(6+), P^(5+) can also act as electron donors or trap sites which facilitate the charge carrier separation and suppress the recombination of electron-hole pairs. In this comprehensive review, we present the most recent advances on non-metal doped TiO_(2) photocatalysts in terms of fundamental aspects, origin of visible light activity and the PC / PEC behaviours for water splitting. In particular, the characteristics of different non-metal elements (N, C, B, S, P, Halogens) as dopants are discussed in details focusing on the synthesis approaches, characterization as well as the efficiency of PC and PEC water splitting. The present review aims at guiding the readers who want quick access to helpful information about how to efficiently improve the performance of photocatalysts by simple doping strategies and could stimulate new intuitive into the new doping strategies.