With the development of offshore engineering, deeply embedded anchors are needed to be penetrated to appreciable depth and attached at the pad-eye. The interaction between anchor chain and soil is a very complex proce...With the development of offshore engineering, deeply embedded anchors are needed to be penetrated to appreciable depth and attached at the pad-eye. The interaction between anchor chain and soil is a very complex process and has not been thoroughly understood yet. In this paper, the finite element method (FEM) was used to study the interaction of soil-chain system. Results of the analysis show that when the attachment point is at a shallow depth, the load-development characteristics of the chain from FEM are in good agreement with that from the model tests and theoretical analysis. But with the depth increment, the results are different obviously in different methods. This phenomenon is resulted from a variety of reasons, and the plastic zone around the chain was studied to try finding the mechanism behind it. It could be seen that the plastic zone extended in different modes at different depths of attachment points. The interaction between the soil and anchor chain makes the load acting on the anchor decrease, but the soil disturbed surrounding the chain increases the anchor failure possibility. When the anchor bearing capacity is evaluated, these two factors should be considered properly at the same time.展开更多
Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor ...Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone.展开更多
基金supported by the State Key Program of National Natural Science of China(Grant No.51239008)
文摘With the development of offshore engineering, deeply embedded anchors are needed to be penetrated to appreciable depth and attached at the pad-eye. The interaction between anchor chain and soil is a very complex process and has not been thoroughly understood yet. In this paper, the finite element method (FEM) was used to study the interaction of soil-chain system. Results of the analysis show that when the attachment point is at a shallow depth, the load-development characteristics of the chain from FEM are in good agreement with that from the model tests and theoretical analysis. But with the depth increment, the results are different obviously in different methods. This phenomenon is resulted from a variety of reasons, and the plastic zone around the chain was studied to try finding the mechanism behind it. It could be seen that the plastic zone extended in different modes at different depths of attachment points. The interaction between the soil and anchor chain makes the load acting on the anchor decrease, but the soil disturbed surrounding the chain increases the anchor failure possibility. When the anchor bearing capacity is evaluated, these two factors should be considered properly at the same time.
基金supports from National Natural Science Foundation of China (NSFC Grant No.52008373)Natural Science Foundation of Zhejiang Province of China (No.Q22E080445)are greatly acknowledged.
文摘Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone.