In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dyna...In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems. In the method, there is no need to determine the structure of the class of normal forms in advance. Because the subspace is not related to the dimensions of the system and the order of the normal forms directly, it is determined only by a given vector field. So the normal forms with high orders and dimensions can be calculated by the method without difficulties. In this paper, is used the method for selecting the minimal subspace and solving homological equations in the subspace, the examples show that the method is very effective.展开更多
讨论双频内共振系统的 Normal Form及其降维问题.利用发展的 Normal Form直接方法,导出了任意双频内共振系统 Normal Form的一般形式.指出 Poincare共振项分为内共振项和非内共振性两类,并定义了内共振项的阶.提出了一种普遍适用的降维...讨论双频内共振系统的 Normal Form及其降维问题.利用发展的 Normal Form直接方法,导出了任意双频内共振系统 Normal Form的一般形式.指出 Poincare共振项分为内共振项和非内共振性两类,并定义了内共振项的阶.提出了一种普遍适用的降维变换,并证明了该变换可将任意双频内共振系统的 Normal Form方程降到3维.应用举例表明,该变换不仅适用于半单问题,也适于非半单问题(即强:1:1内共振系统).展开更多
In the present paper we prove that a planar analytic system with a resonant saddle is analytically linearizable at the saddle if and only if it has an analytic first integral in a neighborhood of the saddle.
The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling an...The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling and an inner product were introduced in the space of homogeneous polynomials. Theorems were established for the explicit expression of the simplest normal forms in terms of the coefficients of both the conventional normal forms of Hopf and generalized Hopf bifurcation systems. A symbolic manipulation was designed to perform the calculation of the coefficients of the simplest normal forms using Mathematica. The original ordinary differential equation was required in the input and the simplest normal form could be obtained as the output. Finally, the simplest normal forms of 6-dimensional generalized Hopf singularity of type 2 and 5-dimensional Hopf bifurcation system were discussed by executing the program. The output showed that the 5th- and 9th-order terms remained in 6-dimensional generalized Hopf singularity of type 2 and the 3rd- and 5th-order terms remained in 5-dimensional Hopf bifurcation system.展开更多
The simplest normal form of resonant double Hopf bifurcation was studied based on Lie operator. The coefficients of the simplest normal forms of resonant double Hopf bifurcation and the nonlinear transformations in te...The simplest normal form of resonant double Hopf bifurcation was studied based on Lie operator. The coefficients of the simplest normal forms of resonant double Hopf bifurcation and the nonlinear transformations in terms of the original system coefficients were given explicitly. The nonlinear transformations were used for reducing the lower- and higher-order normal forms, and the rank of system matrix was used to determine the coefficient of normal form which could be reduced. These make the gained normal form simpler than the traditional one. A general program was compiled with Mathematica. This program can compute the simplest normal form of resonant double Hopf bifurcation and the non-resonant form up to the 7th order.展开更多
The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation ar...The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given.展开更多
By using the Smith normal form of polynomial matrix and algebraic methods, this paper discusses the solvability for the linear matrix equation A iXB i=C over a field, and obtains the explicit formulas of general sol...By using the Smith normal form of polynomial matrix and algebraic methods, this paper discusses the solvability for the linear matrix equation A iXB i=C over a field, and obtains the explicit formulas of general solution or unique solution.展开更多
Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical...Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.展开更多
The modified normal form approach presented by ZHANG Wei-yi, K Huseyin and CHEN Yu-shu is further extended and a different procedure is introduced which lends itself readily to symbolic calculations, like MAPLE. This ...The modified normal form approach presented by ZHANG Wei-yi, K Huseyin and CHEN Yu-shu is further extended and a different procedure is introduced which lends itself readily to symbolic calculations, like MAPLE. This provides a number of significant advantages over the previous approach, and facilitates the associated calculations. To illustrate the new approach, three examples are presented.展开更多
This paper puts forward a complex inner product averaging method for calculating normal form of ODE. Compared with conventional averaging method, the theoretic analytical process has such simple forms as to realize co...This paper puts forward a complex inner product averaging method for calculating normal form of ODE. Compared with conventional averaging method, the theoretic analytical process has such simple forms as to realize computer program easily. Results can be applied in both autonomous and non-autonomous systems. At last, an example is resolved to verify the method.展开更多
On the basis of the method proposed in [1], the paper gives the method for finding the normal form of nonsemi-simple bifurcation problems. As an example, it analyses the normal form of a general nonlinear dynamical sy...On the basis of the method proposed in [1], the paper gives the method for finding the normal form of nonsemi-simple bifurcation problems. As an example, it analyses the normal form of a general nonlinear dynamical system with the nonsemi-simple double zero eigenvalues, and gives out the expression for the coefficients in the normal form by using those in the original system.展开更多
We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value,with the help of a symbolic computation l...We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value,with the help of a symbolic computation language M ATHEMATICA,and extending the matrix representation method.This method can be used to calculate the focal value of any high order terms.This method has been verified by an example.The advantage of this method is simple and more readily applicable.the result is directly obtained by substitution.展开更多
文摘In this paper, based on the invariant subspace theory and adjoint operator concept of linear operator, a new matrix representation method is proposed to calculate the normal forms of n order general nonlinear dynamic systems. In the method, there is no need to determine the structure of the class of normal forms in advance. Because the subspace is not related to the dimensions of the system and the order of the normal forms directly, it is determined only by a given vector field. So the normal forms with high orders and dimensions can be calculated by the method without difficulties. In this paper, is used the method for selecting the minimal subspace and solving homological equations in the subspace, the examples show that the method is very effective.
文摘讨论双频内共振系统的 Normal Form及其降维问题.利用发展的 Normal Form直接方法,导出了任意双频内共振系统 Normal Form的一般形式.指出 Poincare共振项分为内共振项和非内共振性两类,并定义了内共振项的阶.提出了一种普遍适用的降维变换,并证明了该变换可将任意双频内共振系统的 Normal Form方程降到3维.应用举例表明,该变换不仅适用于半单问题,也适于非半单问题(即强:1:1内共振系统).
文摘In the present paper we prove that a planar analytic system with a resonant saddle is analytically linearizable at the saddle if and only if it has an analytic first integral in a neighborhood of the saddle.
基金National Natural Science Foundation of China (No 10372068)
文摘The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling and an inner product were introduced in the space of homogeneous polynomials. Theorems were established for the explicit expression of the simplest normal forms in terms of the coefficients of both the conventional normal forms of Hopf and generalized Hopf bifurcation systems. A symbolic manipulation was designed to perform the calculation of the coefficients of the simplest normal forms using Mathematica. The original ordinary differential equation was required in the input and the simplest normal form could be obtained as the output. Finally, the simplest normal forms of 6-dimensional generalized Hopf singularity of type 2 and 5-dimensional Hopf bifurcation system were discussed by executing the program. The output showed that the 5th- and 9th-order terms remained in 6-dimensional generalized Hopf singularity of type 2 and the 3rd- and 5th-order terms remained in 5-dimensional Hopf bifurcation system.
基金Supported by National Natural Science Foundation of China(No. 10372068).
文摘The simplest normal form of resonant double Hopf bifurcation was studied based on Lie operator. The coefficients of the simplest normal forms of resonant double Hopf bifurcation and the nonlinear transformations in terms of the original system coefficients were given explicitly. The nonlinear transformations were used for reducing the lower- and higher-order normal forms, and the rank of system matrix was used to determine the coefficient of normal form which could be reduced. These make the gained normal form simpler than the traditional one. A general program was compiled with Mathematica. This program can compute the simplest normal form of resonant double Hopf bifurcation and the non-resonant form up to the 7th order.
基金Supported by National Natural Science Foundation of China (No10872141)Doctoral Foundation of Ministry of Education of China (No20060056005)Natural Science Foundation of Tianjin University of Science and Technology (No20070210)
文摘The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given.
基金the NSF of Hunan Province and the Science and Technology Development Foundation of Xiangtan Polytechnic University
文摘By using the Smith normal form of polynomial matrix and algebraic methods, this paper discusses the solvability for the linear matrix equation A iXB i=C over a field, and obtains the explicit formulas of general solution or unique solution.
文摘Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.
文摘The modified normal form approach presented by ZHANG Wei-yi, K Huseyin and CHEN Yu-shu is further extended and a different procedure is introduced which lends itself readily to symbolic calculations, like MAPLE. This provides a number of significant advantages over the previous approach, and facilitates the associated calculations. To illustrate the new approach, three examples are presented.
文摘This paper puts forward a complex inner product averaging method for calculating normal form of ODE. Compared with conventional averaging method, the theoretic analytical process has such simple forms as to realize computer program easily. Results can be applied in both autonomous and non-autonomous systems. At last, an example is resolved to verify the method.
文摘On the basis of the method proposed in [1], the paper gives the method for finding the normal form of nonsemi-simple bifurcation problems. As an example, it analyses the normal form of a general nonlinear dynamical system with the nonsemi-simple double zero eigenvalues, and gives out the expression for the coefficients in the normal form by using those in the original system.
文摘We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value,with the help of a symbolic computation language M ATHEMATICA,and extending the matrix representation method.This method can be used to calculate the focal value of any high order terms.This method has been verified by an example.The advantage of this method is simple and more readily applicable.the result is directly obtained by substitution.