In this study,we revisit the previous mass relations of mirror nuclei by considering 1/N-and 1/Z-dependent terms and the shell effect across a shell.The root-mean-squared deviation is 66 keV for 116 nuclei with neutro...In this study,we revisit the previous mass relations of mirror nuclei by considering 1/N-and 1/Z-dependent terms and the shell effect across a shell.The root-mean-squared deviation is 66 keV for 116 nuclei with neutron number N≥10,as com-pared with experimental data compiled in the AME2020 database.The predicted mass excesses of 173 proton-rich nuclei,including 98 unknown nuclei,are tabulated in the Supplemental Material herein with competitive accuracy.展开更多
The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momen...The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.展开更多
The study of nuclide production and its properties in the N=126 neutron-rich region is prevalent in nuclear physics and astrophysics research.The upcoming High-energy FRagment Separator(HFRS)at the High-Intensity heav...The study of nuclide production and its properties in the N=126 neutron-rich region is prevalent in nuclear physics and astrophysics research.The upcoming High-energy FRagment Separator(HFRS)at the High-Intensity heavy-ion Accelerator Facility(HIAF),an in-flight separator at relativistic energies,is characterized by high beam intensity,large ion-optical acceptance,high magnetic rigidity,and high momentum resolution power.This provides an opportunity to study the production and properties of neutron-rich nuclei around N=126.In this paper,an experimental scheme is proposed to produce neutron-rich nuclei around N=126 and simultaneously measure their mass and lifetime based on the HFRS separator;the feasibility of this scheme is evaluated through simulations.The results show that under the high-resolution optical mode,many new neutron-rich nuclei approaching the r-process abundance peak around A=195 can be produced for the first time,and many nuclei with unknown masses and lifetimes can be produced with high statistics.Using the time-of-flight corrected by the measured dispersive position and energy loss information,the cocktails produced from 208 Pb fragmentation can be unambiguously identified.Moreover,the masses of some neutron-rich nuclei near N=126 can be measured with high precision using the time-of-flight magnetic rigidity technique.This indicates that the HIAF-HFRS facility has the potential for the production and property research of neutron-rich nuclei around N=126,which is of great significance for expanding the chart of nuclides,developing nuclear theories,and understanding the origin of heavy elements in the universe.展开更多
A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction...A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction to the EPIC effective area.To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction,in this work,we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei(AGN).The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures(merging good time intervals(GTIs)from two missions)to avoid bias due to the rapid spectral variability of the AGN.Before the correction,the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by■subsequently yielding significantly underestimated cutoff energy E_(cut)and the strength of reflection component R when performing joint-fitting.We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fitΓ,E_(cut),and R.We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra,but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included.Besides,we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time,in many cases,joint-fitting yields no advantage compared with utilizing NuSTAR data alone.Finally,We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window(SW)mode.展开更多
In the current study,we examined every possible cluster-daughter combination in the heavy-particle decay of isotopes ^(297-300)119 and computed the decay half-lives using the modified generalized liquid drop model(MGL...In the current study,we examined every possible cluster-daughter combination in the heavy-particle decay of isotopes ^(297-300)119 and computed the decay half-lives using the modified generalized liquid drop model(MGLDM)with the preformation factor depending on the disintegration energy.The predicted half-life of every heavy cluster(Z_(C)≥32)was within the experimentally observable limits.These results aligned with the predictions of Poenaru et al.[Phys.Rev.Lett.107,062503(2011)]that superheavy nuclei(SHN)with Z>110 will release heavy particles with a penetrability comparable to or greater than theα-decay.The half-lives predicted using the MGLDM for clusters^(89)Rb,^(91)Rb,and^(92)Rb from parents^(297)119,^(299)119,and^(300)119,respectively,agreed with the predictions of Poenaru et al.[Eur.Phys.J.A 54,14(2018)].It was found that the isotopes of heavy clusters Kr,Rb,Sr,Pa,In,and Cd had half-lives comparable to theαhalf-life;and isotopes of clusters I,Xe,and Cs had the minimum half-life(10^(-14)s).These observations revealed the role of the shell closure(Z=82,N=82,and N=126)of the cluster and daughter nuclei in heavy-cluster radioactivity.We predicted that isotope ^(297,299)119 decayed by 4αdecay chains and isotope^(300)119 decayed by 6αdecay chains,while^(298)119 decayed by continuousαdecay chains.The predicted half-lives and modes of decay of the nuclei in the decay chains of^(297-300)119 agreed with the experimental data,proving the reliability of our calculations.The present study determined the most favorable heavy-cluster emissions from these nuclei and provided suitable projectile-target combinations for their synthesis.展开更多
Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Ed...Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
According to the new proton and neutron nuclear picture described earlier, the structure of the nucleus will also be given a new interpretation. The role of the delocalized electrons detached from the outer shell of n...According to the new proton and neutron nuclear picture described earlier, the structure of the nucleus will also be given a new interpretation. The role of the delocalized electrons detached from the outer shell of neutrons is shown in the binding energy value of the nucleus. It is pointed out that the spatial arrangement of nucleons is also very important for the stability of nuclei according to the analyzation of the magic numbers from a geometric point of view.展开更多
The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter.Based on the correlation between the differences in charge radii of mirror-partner nuclei and the ...The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter.Based on the correlation between the differences in charge radii of mirror-partner nuclei and the slope parameter(L)of symmetry energy at the nuclear saturation density,an analysis of the calibrated slope parameter L was performed in finite nuclei.In this study,relativistic and nonrelativistic energy density functionals were employed to constrain the nuclear symmetry energy through the available databases of the mirror-pair nuclei^(36)Ca–^(36)S,^(38)Ca–^(38)Ar,and ^(54)Ni–^(54)Fe.The deduced nuclear symmetry energy was located in the range 29.89–31.85 MeV,and L of the symmetry energy essentially covered the range 22.50–51.55 MeV at the saturation density.Moreover,the extracted L_(s) at the sensitivity density p_(s)=0.10 fm^(-3) was located in the interval range 30.52–39.76 MeV.展开更多
This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automat...This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols,as well as the segmentation of variable-sized and overlapping nuclei.To this extent,the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks(CNN)architectures as encoder backbones,along with stain normalization and test time augmentation,to improve segmentation accuracy.Additionally,this paper employs a Structure-Preserving Color Normalization(SPCN)technique as a preprocessing step for stain normalization.The proposed model was trained and tested on both single-organ and multi-organ datasets,yielding an F1 score of 84.11%,mean Intersection over Union(IoU)of 81.67%,dice score of 84.11%,accuracy of 92.58%and precision of 83.78%on the multi-organ dataset,and an F1 score of 87.04%,mean IoU of 86.66%,dice score of 87.04%,accuracy of 96.69%and precision of 87.57%on the single-organ dataset.These findings demonstrate that the proposed model ensemble coupled with the right pre-processing and post-processing techniques enhances nuclei segmentation capabilities.展开更多
Background:The liver is fundamental for keeping up the entire body’s homeostasis.The liver hepatocytes have been shown to undergo genomic instability with aging.The stability of the hepatocytes depends on its nuclear...Background:The liver is fundamental for keeping up the entire body’s homeostasis.The liver hepatocytes have been shown to undergo genomic instability with aging.The stability of the hepatocytes depends on its nuclear architecture.Calorie restriction has been shown to extend life-span favorably and this may be through the reorganization of the nuclear structure.Objective:To study the effect of cyclic feeding regime on the chromatin assembly anchored to the nuclear membrane scaffold of rat models hepatocytes nuclei.Method:Rats models underwent cyclic feeding regime,after which nuclei were isolated;then,we investigated the chromatin decondensation and nuclear membrane disintegration of the hepatocytes using fluorescence imaging methods.Results:In 60 seconds,protease decondensed the chromatin and disintegrated the nuclear membrane structure of controls.After the first fasting,the time increased to 145 seconds in 3-month-old rats.The first refeeding increased the time to 156 seconds with a further rise to 340 seconds following the second fasting,then dropped to 116 seconds by the second refeeding.20 months old rats showed 186 seconds increase in the time of chromatin decondensation and nuclear membrane disintegration after the first fasting,with a decrease to 140 seconds observed after first refeeding.The second fasting increased the time to 165 seconds,which then slightly decreased to 163 seconds after the second refeeding.Conclusion:These results show that intermittent fasting may have acted on chromatin histone interactions and the structural lamin networks of the nuclear membranes in bringing about nuclear stability,which is essential for normal cellular function.展开更多
We calculate the binding energies of Ni, Cu, Xe, Cs, Pt, Au, Np, Pu isotope chains using two interaction parameter sets NL-3 and NL-Z, and compared the relative errors of the even-even nuclei with those of odd-even nu...We calculate the binding energies of Ni, Cu, Xe, Cs, Pt, Au, Np, Pu isotope chains using two interaction parameter sets NL-3 and NL-Z, and compared the relative errors of the even-even nuclei with those of odd-even nuclei and odd-odd nuclei. We find that the errors of binding energy of odd-even and odd-odd nuclei are not bigger than the one of even-even nuclei. The result shows that comparing with even-even nuclei, there is no systematic error and approximation in the calculations of the binding energy of odd-even and odd-odd nuclei with relativistic mean-field theory. In addition, the result is explained theoretically.展开更多
[Objective] The experiment aimed to study an efficient method of Nuclei extraction of cotton and provided technical support for constructing large-insert genomic library and sequencing complete genome. [Method] The co...[Objective] The experiment aimed to study an efficient method of Nuclei extraction of cotton and provided technical support for constructing large-insert genomic library and sequencing complete genome. [Method] The cotton cotyledons germinated in dark moisture chamber for one week were chopped with a sharp sterile scalpel in a Petri dish which contained ice-cold nucleus isolation buffer (10 mmol/L MgSO4, 5 mmol/L KCl, 0.5 mmol/L HEPES, 1 mg/ml DTT, 0.25% Triton X-100 and 2% PVP40), then the nuclei were collected after selected through 100, 50 and 30 μm nylon meshes and centrifugation. Meanwhile, the tender leaves and cotyledons with different germination time in dark were treated by grinding method and sharp scalpel method. [Result] The chopping with a sharp scalpel method was very simple and rapid, which did not need grind and mercaptoethanol treatment and the successful extraction rate was 100%.[Conclusion] An efficient method of nuclei extraction of cotton with simple, high efficiency, rapid reaction and poison free were established.展开更多
Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hype...Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hypernuclei in heavy-ion reactions,for instance,the deuteron(d),triton(t),helium(~3He),and hypertriton(_A^3H)in minimum bias(0-80%centrality)~6Li+^(12)C reactions at beam energy of 3.5A GeV.The penalty factor for light clusters is extracted from the yields,and the distributions of 0 angle of particles,which provide direct suggesetions about the location of particle detectors in the near future facility-High Intensity heavy-ion Accelerator Facility(HIAF) are investigated.Our calculation demonstrates that HIAF is suitable for studying hypernuclear physics.展开更多
The reactions of ^16O+^204pb, ^82Se+^138Ba and ^96Zr+^124Sn lead to the same compound nucleus ^220Th. In terms of the assumption that the surviving probability is independent of entrance channel, we have extracted ...The reactions of ^16O+^204pb, ^82Se+^138Ba and ^96Zr+^124Sn lead to the same compound nucleus ^220Th. In terms of the assumption that the surviving probability is independent of entrance channel, we have extracted the fusion hindrance factor from the evaporation residue cross sections for the reactions of ^82Se+^138 Ba and ^96Zr+^124Sn and compared with the results calculated using a two-parameter Smoluchowski equation. The theoretical predictions are basically in agreement with the experimental data. It is found that the probability of forming a compact ^220Th is less than 10% for the reactions considered. For the systems more massive than ^220Th, fusion should be much more strongly suppressed due to the competition of quasifission with complete fusion. Understanding of this inhibition is essential to forming new superheavy nuclei.展开更多
Radioactivity of nuclei in a centrifugal force field of an ultracentrifuge is considered for heavy radioactive nuclei, i.e., for the same nuclei, but with a significant virtual mass thousands of times larger than the ...Radioactivity of nuclei in a centrifugal force field of an ultracentrifuge is considered for heavy radioactive nuclei, i.e., for the same nuclei, but with a significant virtual mass thousands of times larger than the actual mass and is characterized by an angular momentum. As the nucleus leaves the centrifugal force field, the virtual mass disappears, but the spin number appears and/or changes. The role of centrifugal and gravitational forces in radioactive decay of nuclei is studied. According to the terminology of western researchers, such a virtual mass state is called the dynamic gravitation which is more adequate. The oscillator and possible changes in the nucleus state are considered under conditions of dynamic gravitation and taking into account features of atomic nucleus physics. To a first approximation, the drop model of the nucleus was used, in which shape fluctuations have much in common with geophysical and astrophysical analogues. Shape fluctuations of analogues strongly depend on the gravitational force g defined by their mass (or nucleus mass). Experiments were performed by radiometric measurements of transbaikalian uranium ore (1.5 g) with known composition in a centrifuge at various rotation rates or gravitational forces g. The existence of characteristic times or the effect of rotation frequencies (i.e., g) on atomic nuclei, which, along with the nucleus type itself, controls the nucleus response to perturbation (stability increase or decay), is found statistically significant.展开更多
Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boun...Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.展开更多
The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangs...The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.展开更多
As the substrate for nucleation of primary austenite in hardfacing metals, the effectiveness of RE inclusions and the most common inclusions such as Al2O3, SiO2 and MnO in hardfacing metals of medium-high carbon steel...As the substrate for nucleation of primary austenite in hardfacing metals, the effectiveness of RE inclusions and the most common inclusions such as Al2O3, SiO2 and MnO in hardfacing metals of medium-high carbon steels was analyzed and calculated in detail. The calculation based on the theory of planar lattice misfit shows that Ce2O3, La2O3 and Ce2O2S, instead of SiO2, Al2O3, MnO and CeS, are effective as the heterogeneous nuclei of primary austenite in medium-high carbon steels.展开更多
It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an...It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an image analysis method of nucleic acids at the price of a small amount of sample. When a droplet of the supramolecular complex solution, formed by neutral red and nucleic acids(NA) under an approximate neutral condition, was placed on the hydrophobic surface of dimethyl dichlorosilane pretreated glass slides, and it was evaporated, the supramolecular complex exhibited the periphery of the droplet due to the capillary effect, and accumulated there to form a red capillary flow directed assembly ring(CFDAR). A typical CFDAR has an outer diameter of (2 r ) about 1.18 mm and a ring width(2 δ ) of about 41 μm. Depending on the experimental conditions, a variety of CFDAR can be assembled. The experimental results are in agreement with our former theoretical discussion. It was found that when a droplet volume is 0.1 μL, the fluorescence intensity of the CFDAR formed by the NR NA is in proportion to the content of calf thymus DNA in the range of 0-0.28 ng, fish sperm DNA of 0-0.24 ng and yeast RNA of 0-0.16 ng with the limit of detection(3 σ ) of 1 7, 1.4 and 0.9 pg, respectively for the three nucleic acids.展开更多
基金supported by the National Natural Science Foundation of China(No.11905130).
文摘In this study,we revisit the previous mass relations of mirror nuclei by considering 1/N-and 1/Z-dependent terms and the shell effect across a shell.The root-mean-squared deviation is 66 keV for 116 nuclei with neutron number N≥10,as com-pared with experimental data compiled in the AME2020 database.The predicted mass excesses of 173 proton-rich nuclei,including 98 unknown nuclei,are tabulated in the Supplemental Material herein with competitive accuracy.
基金supported by the National Natural Science Foundation of China(No.11935001)the Natural Science Foundation of Anhui Province(No.2008085MA26).
文摘The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.
基金supported by the High-Intensity heavy-ion Accelerator Facility (HIAF) project approved by the National Development and Reform Commission of China
文摘The study of nuclide production and its properties in the N=126 neutron-rich region is prevalent in nuclear physics and astrophysics research.The upcoming High-energy FRagment Separator(HFRS)at the High-Intensity heavy-ion Accelerator Facility(HIAF),an in-flight separator at relativistic energies,is characterized by high beam intensity,large ion-optical acceptance,high magnetic rigidity,and high momentum resolution power.This provides an opportunity to study the production and properties of neutron-rich nuclei around N=126.In this paper,an experimental scheme is proposed to produce neutron-rich nuclei around N=126 and simultaneously measure their mass and lifetime based on the HFRS separator;the feasibility of this scheme is evaluated through simulations.The results show that under the high-resolution optical mode,many new neutron-rich nuclei approaching the r-process abundance peak around A=195 can be produced for the first time,and many nuclei with unknown masses and lifetimes can be produced with high statistics.Using the time-of-flight corrected by the measured dispersive position and energy loss information,the cocktails produced from 208 Pb fragmentation can be unambiguously identified.Moreover,the masses of some neutron-rich nuclei near N=126 can be measured with high precision using the time-of-flight magnetic rigidity technique.This indicates that the HIAF-HFRS facility has the potential for the production and property research of neutron-rich nuclei around N=126,which is of great significance for expanding the chart of nuclides,developing nuclear theories,and understanding the origin of heavy elements in the universe.
基金supported by the National Natural Science Foundation of China(12033006,12192221,123B2042).
文摘A recently released XMM-Newton note revealed a significant calibration issue between nuclear spectroscopic telescope array(NuSTAR)and XMM-Newton European Photon Imaging Camera(EPIC)and provided an empirical correction to the EPIC effective area.To quantify the bias caused by the calibration issue in the joint analysis of XMM-NuSTAR spectra and verify the effectiveness of the correction,in this work,we perform joint-fitting of the NuSTAR and EPIC-pn spectra for a large sample of 104 observation pairs of 44 X-ray bright active galactic nuclei(AGN).The spectra were extracted after requiring perfect simultaneity between the XMM-Newton and NuSTAR exposures(merging good time intervals(GTIs)from two missions)to avoid bias due to the rapid spectral variability of the AGN.Before the correction,the EPIC-pn spectra are systematically harder than the corresponding NuSTAR spectra by■subsequently yielding significantly underestimated cutoff energy E_(cut)and the strength of reflection component R when performing joint-fitting.We confirm that the correction is highly effective and can commendably erase the discrepancy in best-fitΓ,E_(cut),and R.We thus urge the community to apply the correction when joint-fitting XMM-NuSTAR spectra,but note that the correction is limited to 3–12 keV and therefore not applicable when the soft X-ray band data are included.Besides,we show that as merging GTIs from two missions would cause severe loss of NuSTAR net exposure time,in many cases,joint-fitting yields no advantage compared with utilizing NuSTAR data alone.Finally,We present a technical note on filtering periods of high background flares for XMM-Newton EPIC-pn exposures in the small window(SW)mode.
文摘In the current study,we examined every possible cluster-daughter combination in the heavy-particle decay of isotopes ^(297-300)119 and computed the decay half-lives using the modified generalized liquid drop model(MGLDM)with the preformation factor depending on the disintegration energy.The predicted half-life of every heavy cluster(Z_(C)≥32)was within the experimentally observable limits.These results aligned with the predictions of Poenaru et al.[Phys.Rev.Lett.107,062503(2011)]that superheavy nuclei(SHN)with Z>110 will release heavy particles with a penetrability comparable to or greater than theα-decay.The half-lives predicted using the MGLDM for clusters^(89)Rb,^(91)Rb,and^(92)Rb from parents^(297)119,^(299)119,and^(300)119,respectively,agreed with the predictions of Poenaru et al.[Eur.Phys.J.A 54,14(2018)].It was found that the isotopes of heavy clusters Kr,Rb,Sr,Pa,In,and Cd had half-lives comparable to theαhalf-life;and isotopes of clusters I,Xe,and Cs had the minimum half-life(10^(-14)s).These observations revealed the role of the shell closure(Z=82,N=82,and N=126)of the cluster and daughter nuclei in heavy-cluster radioactivity.We predicted that isotope ^(297,299)119 decayed by 4αdecay chains and isotope^(300)119 decayed by 6αdecay chains,while^(298)119 decayed by continuousαdecay chains.The predicted half-lives and modes of decay of the nuclei in the decay chains of^(297-300)119 agreed with the experimental data,proving the reliability of our calculations.The present study determined the most favorable heavy-cluster emissions from these nuclei and provided suitable projectile-target combinations for their synthesis.
文摘Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
文摘According to the new proton and neutron nuclear picture described earlier, the structure of the nucleus will also be given a new interpretation. The role of the delocalized electrons detached from the outer shell of neutrons is shown in the binding energy value of the nucleus. It is pointed out that the spatial arrangement of nucleons is also very important for the stability of nuclei according to the analyzation of the magic numbers from a geometric point of view.
基金supported by the Key Laboratory of High Precision Nuclear Spectroscopy,Institute of Modern Physics,Chinese Academy of Sciences,the National Natural Science Foundation of China(Nos.12135004,11635003,11961141004,12275025,and 11975096)the Fundamental Research Funds for Central Universities(No.2020NTST06).
文摘The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter.Based on the correlation between the differences in charge radii of mirror-partner nuclei and the slope parameter(L)of symmetry energy at the nuclear saturation density,an analysis of the calibrated slope parameter L was performed in finite nuclei.In this study,relativistic and nonrelativistic energy density functionals were employed to constrain the nuclear symmetry energy through the available databases of the mirror-pair nuclei^(36)Ca–^(36)S,^(38)Ca–^(38)Ar,and ^(54)Ni–^(54)Fe.The deduced nuclear symmetry energy was located in the range 29.89–31.85 MeV,and L of the symmetry energy essentially covered the range 22.50–51.55 MeV at the saturation density.Moreover,the extracted L_(s) at the sensitivity density p_(s)=0.10 fm^(-3) was located in the interval range 30.52–39.76 MeV.
文摘This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols,as well as the segmentation of variable-sized and overlapping nuclei.To this extent,the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks(CNN)architectures as encoder backbones,along with stain normalization and test time augmentation,to improve segmentation accuracy.Additionally,this paper employs a Structure-Preserving Color Normalization(SPCN)technique as a preprocessing step for stain normalization.The proposed model was trained and tested on both single-organ and multi-organ datasets,yielding an F1 score of 84.11%,mean Intersection over Union(IoU)of 81.67%,dice score of 84.11%,accuracy of 92.58%and precision of 83.78%on the multi-organ dataset,and an F1 score of 87.04%,mean IoU of 86.66%,dice score of 87.04%,accuracy of 96.69%and precision of 87.57%on the single-organ dataset.These findings demonstrate that the proposed model ensemble coupled with the right pre-processing and post-processing techniques enhances nuclei segmentation capabilities.
基金funding agency in the public,commercial,or not-for-profit sectors.
文摘Background:The liver is fundamental for keeping up the entire body’s homeostasis.The liver hepatocytes have been shown to undergo genomic instability with aging.The stability of the hepatocytes depends on its nuclear architecture.Calorie restriction has been shown to extend life-span favorably and this may be through the reorganization of the nuclear structure.Objective:To study the effect of cyclic feeding regime on the chromatin assembly anchored to the nuclear membrane scaffold of rat models hepatocytes nuclei.Method:Rats models underwent cyclic feeding regime,after which nuclei were isolated;then,we investigated the chromatin decondensation and nuclear membrane disintegration of the hepatocytes using fluorescence imaging methods.Results:In 60 seconds,protease decondensed the chromatin and disintegrated the nuclear membrane structure of controls.After the first fasting,the time increased to 145 seconds in 3-month-old rats.The first refeeding increased the time to 156 seconds with a further rise to 340 seconds following the second fasting,then dropped to 116 seconds by the second refeeding.20 months old rats showed 186 seconds increase in the time of chromatin decondensation and nuclear membrane disintegration after the first fasting,with a decrease to 140 seconds observed after first refeeding.The second fasting increased the time to 165 seconds,which then slightly decreased to 163 seconds after the second refeeding.Conclusion:These results show that intermittent fasting may have acted on chromatin histone interactions and the structural lamin networks of the nuclear membranes in bringing about nuclear stability,which is essential for normal cellular function.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475026 (2004)
文摘We calculate the binding energies of Ni, Cu, Xe, Cs, Pt, Au, Np, Pu isotope chains using two interaction parameter sets NL-3 and NL-Z, and compared the relative errors of the even-even nuclei with those of odd-even nuclei and odd-odd nuclei. We find that the errors of binding energy of odd-even and odd-odd nuclei are not bigger than the one of even-even nuclei. The result shows that comparing with even-even nuclei, there is no systematic error and approximation in the calculations of the binding energy of odd-even and odd-odd nuclei with relativistic mean-field theory. In addition, the result is explained theoretically.
基金Supported by the National Natural Science Foundation of China(No.30170501)the State of New Varieties of GMO Cultivation Major Projects (No.2008ZX08005-003)the National High-tech Research Development Plan (No.2003AA207051)~~
文摘[Objective] The experiment aimed to study an efficient method of Nuclei extraction of cotton and provided technical support for constructing large-insert genomic library and sequencing complete genome. [Method] The cotton cotyledons germinated in dark moisture chamber for one week were chopped with a sharp sterile scalpel in a Petri dish which contained ice-cold nucleus isolation buffer (10 mmol/L MgSO4, 5 mmol/L KCl, 0.5 mmol/L HEPES, 1 mg/ml DTT, 0.25% Triton X-100 and 2% PVP40), then the nuclei were collected after selected through 100, 50 and 30 μm nylon meshes and centrifugation. Meanwhile, the tender leaves and cotyledons with different germination time in dark were treated by grinding method and sharp scalpel method. [Result] The chopping with a sharp scalpel method was very simple and rapid, which did not need grind and mercaptoethanol treatment and the successful extraction rate was 100%.[Conclusion] An efficient method of nuclei extraction of cotton with simple, high efficiency, rapid reaction and poison free were established.
基金supported in part by the Major State Basic Research Development Program in China(Nos.2014CB845401 and2015CB856904)the National Natural Science Foundation of China(Nos.11421505,11520101004,11275250,11322547 and U1232206)Key Program of CAS for the Frontier Science(No.QYZDJ-SSW-SLH002)
文摘Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hypernuclei in heavy-ion reactions,for instance,the deuteron(d),triton(t),helium(~3He),and hypertriton(_A^3H)in minimum bias(0-80%centrality)~6Li+^(12)C reactions at beam energy of 3.5A GeV.The penalty factor for light clusters is extracted from the yields,and the distributions of 0 angle of particles,which provide direct suggesetions about the location of particle detectors in the near future facility-High Intensity heavy-ion Accelerator Facility(HIAF) are investigated.Our calculation demonstrates that HIAF is suitable for studying hypernuclear physics.
基金Supported by the National Natural Science Foundation of China under Grants Nos 10235020 and 10235030.
文摘The reactions of ^16O+^204pb, ^82Se+^138Ba and ^96Zr+^124Sn lead to the same compound nucleus ^220Th. In terms of the assumption that the surviving probability is independent of entrance channel, we have extracted the fusion hindrance factor from the evaporation residue cross sections for the reactions of ^82Se+^138 Ba and ^96Zr+^124Sn and compared with the results calculated using a two-parameter Smoluchowski equation. The theoretical predictions are basically in agreement with the experimental data. It is found that the probability of forming a compact ^220Th is less than 10% for the reactions considered. For the systems more massive than ^220Th, fusion should be much more strongly suppressed due to the competition of quasifission with complete fusion. Understanding of this inhibition is essential to forming new superheavy nuclei.
文摘Radioactivity of nuclei in a centrifugal force field of an ultracentrifuge is considered for heavy radioactive nuclei, i.e., for the same nuclei, but with a significant virtual mass thousands of times larger than the actual mass and is characterized by an angular momentum. As the nucleus leaves the centrifugal force field, the virtual mass disappears, but the spin number appears and/or changes. The role of centrifugal and gravitational forces in radioactive decay of nuclei is studied. According to the terminology of western researchers, such a virtual mass state is called the dynamic gravitation which is more adequate. The oscillator and possible changes in the nucleus state are considered under conditions of dynamic gravitation and taking into account features of atomic nucleus physics. To a first approximation, the drop model of the nucleus was used, in which shape fluctuations have much in common with geophysical and astrophysical analogues. Shape fluctuations of analogues strongly depend on the gravitational force g defined by their mass (or nucleus mass). Experiments were performed by radiometric measurements of transbaikalian uranium ore (1.5 g) with known composition in a centrifuge at various rotation rates or gravitational forces g. The existence of characteristic times or the effect of rotation frequencies (i.e., g) on atomic nuclei, which, along with the nucleus type itself, controls the nucleus response to perturbation (stability increase or decay), is found statistically significant.
基金sponsored by the U.S. Department of Energy (DOE)supported by the Ministry of Science and Technology of China (Grant Nos. 2010CB950804 and 2013CB955801)+1 种基金the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05100300)the National Natural Science Foundation of China (Grant No. 41305011)
文摘Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.
基金sponsored by the National Natural Science Foundation of China (Grant No. 41030962)the Special Fund for doctorate programs in Chinese Universities (Grant No. 20113228110002)+1 种基金the Priority Academic Program of Development of Jiangsu Higher Education Institutions (PAPD)the Key Laboratory for Aerosol–Cloud– Precipitation of the China Meteorological Administration (Grant No. KDW1101)
文摘The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.
文摘As the substrate for nucleation of primary austenite in hardfacing metals, the effectiveness of RE inclusions and the most common inclusions such as Al2O3, SiO2 and MnO in hardfacing metals of medium-high carbon steels was analyzed and calculated in detail. The calculation based on the theory of planar lattice misfit shows that Ce2O3, La2O3 and Ce2O2S, instead of SiO2, Al2O3, MnO and CeS, are effective as the heterogeneous nuclei of primary austenite in medium-high carbon steels.
基金Supported by the NationalNaturalScience Foundation of China( No. 2 0 175 0 1) and U niversity Key Teachers Programdirected under the Ministry of Education ofP.R.China( No. 2 0 0 0 - 6 5 )
文摘It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an image analysis method of nucleic acids at the price of a small amount of sample. When a droplet of the supramolecular complex solution, formed by neutral red and nucleic acids(NA) under an approximate neutral condition, was placed on the hydrophobic surface of dimethyl dichlorosilane pretreated glass slides, and it was evaporated, the supramolecular complex exhibited the periphery of the droplet due to the capillary effect, and accumulated there to form a red capillary flow directed assembly ring(CFDAR). A typical CFDAR has an outer diameter of (2 r ) about 1.18 mm and a ring width(2 δ ) of about 41 μm. Depending on the experimental conditions, a variety of CFDAR can be assembled. The experimental results are in agreement with our former theoretical discussion. It was found that when a droplet volume is 0.1 μL, the fluorescence intensity of the CFDAR formed by the NR NA is in proportion to the content of calf thymus DNA in the range of 0-0.28 ng, fish sperm DNA of 0-0.24 ng and yeast RNA of 0-0.16 ng with the limit of detection(3 σ ) of 1 7, 1.4 and 0.9 pg, respectively for the three nucleic acids.