期刊文献+
共找到330篇文章
< 1 2 17 >
每页显示 20 50 100
Small objects detection in UAV aerial images based on improved Faster R-CNN 被引量:6
1
作者 WANG Ji-wu LUO Hai-bao +1 位作者 YU Peng-fei LI Chen-yang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期11-16,共6页
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo... In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images. 展开更多
关键词 Faster region-based convolutional neural network(Faster R-CNN) ResNet101 unmanned aerial vehicle(UAV) small objects detection bird’s nest
下载PDF
An Improved Non-Parametric Method for Multiple Moving Objects Detection in the Markov Random Field 被引量:1
2
作者 Qin Wan Xiaolin Zhu +3 位作者 Yueping Xiao Jine Yan Guoquan Chen Mingui Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期129-149,共21页
Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary... Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods. 展开更多
关键词 Object detection non-parametric method markov random field
下载PDF
MULTIPLE KERNEL RELEVANCE VECTOR MACHINE FOR GEOSPATIAL OBJECTS DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES 被引量:1
3
作者 Li Xiangjuan Sun Xian +2 位作者 Wang Hongqi Li Yu Sun Hao 《Journal of Electronics(China)》 2012年第5期353-360,共8页
Geospatial objects detection within complex environment is a challenging problem in remote sensing area. In this paper, we derive an extension of the Relevance Vector Machine (RVM) technique to multiple kernel version... Geospatial objects detection within complex environment is a challenging problem in remote sensing area. In this paper, we derive an extension of the Relevance Vector Machine (RVM) technique to multiple kernel version. The proposed method learns an optimal kernel combination and the associated classifier simultaneously. Two feature types are extracted from images, forming basis kernels. Then these basis kernels are weighted combined and resulted the composite kernel exploits interesting points and appearance information of objects simultaneously. Weights and the detection model are finally learnt by a new algorithm. Experimental results show that the proposed method improve detection accuracy to above 88%, yields good interpretation for the selected subset of features and appears sparser than traditional single-kernel RVMs. 展开更多
关键词 Object detection Feature extraction Relevance Vector Machine (RVM) Support Vector Machine (SVM) Sliding-window
下载PDF
Dot Size Thermal Objects Detection in Atmosphere of Infrared Range
4
作者 Igor Vladimirovich Yakimenko Vadim Vladimirovich Borisov Irina Vladimirovna Volkova 《Journal of Chemistry and Chemical Engineering》 2014年第5期530-534,共5页
The article deals with the experimental studies of atmosphere indistinct radiation structure. The information extraction background of dot size thermal object presence in atmosphere is reasonable. Indistinct generaliz... The article deals with the experimental studies of atmosphere indistinct radiation structure. The information extraction background of dot size thermal object presence in atmosphere is reasonable. Indistinct generalization of experimental study regularities technique of space-time irregularity radiation structure in infrared wave range is offered. The approach to dot size thermal object detection in atmosphere is proved with a help of threshold method in the thermodynamic and turbulent process conditions, based on the indistinct statement return task solution. 展开更多
关键词 Optical-electronic devices experimental studies ATMOSPHERE infrared wave range power radiation brightness dot sizethermal object detection.
下载PDF
A review of occluded objects detection in real complex scenarios for autonomous driving 被引量:1
5
作者 Jiageng Ruan Hanghang Cui +3 位作者 Yuhan Huang Tongyang Li Changcheng Wu Kaixuan Zhang 《Green Energy and Intelligent Transportation》 2023年第3期65-77,共13页
Autonomous driving is a promising way to future safe,efficient,and low-carbon transportation.Real-time ac-curate target detection is an essential precondition for the generation of proper following decision and contro... Autonomous driving is a promising way to future safe,efficient,and low-carbon transportation.Real-time ac-curate target detection is an essential precondition for the generation of proper following decision and control signals.However,considering the complex practical scenarios,accurate recognition of occluded targets is a major challenge of target detection for autonomous driving with limited computational capability.To reveal the overlap and difference between various occluded object detection by sharing the same available sensors,this paper presents a review of detection methods for occluded objects in complex real-driving scenarios.Considering the rapid development of autonomous driving technologies,the research analyzed in this study is limited to the recent five years.The study of occluded object detection is divided into three parts,namely occluded vehicles,pedes-trians and traffic signs.This paper provided a detailed summary of the target detection methods used in these three parts according to the differences in detection methods and ideas,which is followed by the comparison of advantages and disadvantages of different detection methods for the same object.Finally,the shortcomings and limitations of the existing detection methods are summarized,and the challenges and future development prospects in this field are discussed. 展开更多
关键词 Autonomous driving Occluded objects Object detection VEHICLES PEDESTRIANS Traffic signs
原文传递
Automatic detection of small bowel lesions with different bleeding risks based on deep learning models 被引量:1
6
作者 Rui-Ya Zhang Peng-Peng Qiang +5 位作者 Ling-Jun Cai Tao Li Yan Qin Yu Zhang Yi-Qing Zhao Jun-Ping Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第2期170-183,共14页
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some ... BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups. 展开更多
关键词 Artificial intelligence Deep learning Capsule endoscopy Image classification Object detection Bleeding risk
下载PDF
An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7 被引量:1
7
作者 Liqiu Ren Zhanying Li +2 位作者 Xueyu He Lingyan Kong Yinghao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2829-2845,共17页
For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic... For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection. 展开更多
关键词 Deep learning underwater object detection improved YOLOv7 attention mechanism
下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer 被引量:1
8
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAV images TRANSFORMER dense small object detection
下载PDF
Human intrusion detection for high-speed railway perimeter under all-weather condition 被引量:1
9
作者 Pengyue Guo Tianyun Shi +1 位作者 Zhen Ma Jing Wang 《Railway Sciences》 2024年第1期97-110,共14页
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo... Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article. 展开更多
关键词 High-speed rail perimeter Personnel invasion Object detection ALL-WEATHER Radar-camera fusion
下载PDF
YOLO-MFD:Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head
10
作者 Zhongyuan Zhang Wenqiu Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2547-2563,共17页
Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false... Remote sensing imagery,due to its high altitude,presents inherent challenges characterized by multiple scales,limited target areas,and intricate backgrounds.These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery.Additionally,these complexities contribute to inaccuracies in target localization and hinder precise target categorization.This paper addresses these challenges by proposing a solution:The YOLO-MFD model(YOLO-MFD:Remote Sensing Image Object Detection withMulti-scale Fusion Dynamic Head).Before presenting our method,we delve into the prevalent issues faced in remote sensing imagery analysis.Specifically,we emphasize the struggles of existing object recognition algorithms in comprehensively capturing critical image features amidst varying scales and complex backgrounds.To resolve these issues,we introduce a novel approach.First,we propose the implementation of a lightweight multi-scale module called CEF.This module significantly improves the model’s ability to comprehensively capture important image features by merging multi-scale feature information.It effectively addresses the issues of missed detection and mistaken alarms that are common in remote sensing imagery.Second,an additional layer of small target detection heads is added,and a residual link is established with the higher-level feature extraction module in the backbone section.This allows the model to incorporate shallower information,significantly improving the accuracy of target localization in remotely sensed images.Finally,a dynamic head attentionmechanism is introduced.This allows themodel to exhibit greater flexibility and accuracy in recognizing shapes and targets of different sizes.Consequently,the precision of object detection is significantly improved.The trial results show that the YOLO-MFD model shows improvements of 6.3%,3.5%,and 2.5%over the original YOLOv8 model in Precision,map@0.5 and map@0.5:0.95,separately.These results illustrate the clear advantages of the method. 展开更多
关键词 Object detection YOLOv8 MULTI-SCALE attention mechanism dynamic detection head
下载PDF
A Novel Tensor Decomposition-Based Efficient Detector for Low-Altitude Aerial Objects With Knowledge Distillation Scheme
11
作者 Nianyin Zeng Xinyu Li +2 位作者 Peishu Wu Han Li Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期487-501,共15页
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati... Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation. 展开更多
关键词 Attention mechanism knowledge distillation(KD) object detection tensor decomposition(TD) unmanned aerial vehicles(UAVs)
下载PDF
Enhanced Object Detection and Classification via Multi-Method Fusion
12
作者 Muhammad Waqas Ahmed Nouf Abdullah Almujally +2 位作者 Abdulwahab Alazeb Asaad Algarni Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第5期3315-3331,共17页
Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occ... Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occlusion,and limited labeled data.To address these challenges,we introduce a comprehensive methodology toenhance image classification and object detection accuracy.The proposed approach involves the integration ofmultiple methods in a complementary way.The process commences with the application of Gaussian filters tomitigate the impact of noise interference.These images are then processed for segmentation using Fuzzy C-Meanssegmentation in parallel with saliency mapping techniques to find the most prominent regions.The Binary RobustIndependent Elementary Features(BRIEF)characteristics are then extracted fromdata derived fromsaliency mapsand segmented images.For precise object separation,Oriented FAST and Rotated BRIEF(ORB)algorithms areemployed.Genetic Algorithms(GAs)are used to optimize Random Forest classifier parameters which lead toimproved performance.Our method stands out due to its comprehensive approach,adeptly addressing challengessuch as changing backdrops,occlusion,and limited labeled data concurrently.A significant enhancement hasbeen achieved by integrating Genetic Algorithms(GAs)to precisely optimize parameters.This minor adjustmentnot only boosts the uniqueness of our system but also amplifies its overall efficacy.The proposed methodologyhas demonstrated notable classification accuracies of 90.9%and 89.0%on the challenging Corel-1k and MSRCdatasets,respectively.Furthermore,detection accuracies of 87.2%and 86.6%have been attained.Although ourmethod performed well in both datasets it may face difficulties in real-world data especially where datasets havehighly complex backgrounds.Despite these limitations,GAintegration for parameter optimization shows a notablestrength in enhancing the overall adaptability and performance of our system. 展开更多
关键词 BRIEF features saliency map fuzzy c-means object detection object recognition
下载PDF
Advancing PCB Quality Control:Harnessing YOLOv8 Deep Learning for Real-Time Fault Detection
13
作者 Rehman Ullah Khan Fazal Shah +1 位作者 Ahmad Ali Khan Hamza Tahir 《Computers, Materials & Continua》 SCIE EI 2024年第10期345-367,共23页
Printed Circuit Boards(PCBs)are materials used to connect components to one another to form a working circuit.PCBs play a crucial role in modern electronics by connecting various components.The trend of integrating mo... Printed Circuit Boards(PCBs)are materials used to connect components to one another to form a working circuit.PCBs play a crucial role in modern electronics by connecting various components.The trend of integrating more components onto PCBs is becoming increasingly common,which presents significant challenges for quality control processes.Given the potential impact that even minute defects can have on signal traces,the surface inspection of PCB remains pivotal in ensuring the overall system integrity.To address the limitations associated with manual inspection,this research endeavors to automate the inspection process using the YOLOv8 deep learning algorithm for real-time fault detection in PCBs.Specifically,we explore the effectiveness of two variants of the YOLOv8 architecture:YOLOv8 Small and YOLOv8 Nano.Through rigorous experimentation and evaluation of our dataset which was acquired from Peking University’s Human-Robot Interaction Lab,we aim to assess the suitability of these models for improving fault detection accuracy within the PCB manufacturing process.Our results reveal the remarkable capabilities of YOLOv8 Small models in accurately identifying and classifying PCB faults.The model achieved a precision of 98.7%,a recall of 99%,an accuracy of 98.6%,and an F1 score of 0.98.These findings highlight the potential of the YOLOv8 Small model to significantly improve the quality control processes in PCB manufacturing by providing a reliable and efficient solution for fault detection. 展开更多
关键词 Printed circuit boards(PCB) YOLOv8 YOLOv8 Nano YOLOv8 Small deep learning object detection
下载PDF
Research on fast detection method of infrared small targets under resourceconstrained conditions
14
作者 ZHANG Rui LIU Min LI Zheng 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期582-587,共6页
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ... Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions. 展开更多
关键词 infrared UAV image fast small object detection low impedance loss function
下载PDF
Probability-Enhanced Anchor-Free Detector for Remote-Sensing Object Detection
15
作者 Chengcheng Fan Zhiruo Fang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4925-4943,共19页
Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often... Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection. 展开更多
关键词 Object detection anchor-free detector PROBABILISTIC fully convolutional neural network remote sensing
下载PDF
A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network
16
作者 Meng Huang Honglei Wei Xianyi Zhai 《Computers, Materials & Continua》 SCIE EI 2024年第4期531-547,共17页
In pursuit of cost-effective manufacturing,enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips.To ensure consistent chip orientation during packaging,a circular marker on the f... In pursuit of cost-effective manufacturing,enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips.To ensure consistent chip orientation during packaging,a circular marker on the front side is employed for pin alignment following successful functional testing.However,recycled chips often exhibit substantial surface wear,and the identification of the relatively small marker proves challenging.Moreover,the complexity of generic target detection algorithms hampers seamless deployment.Addressing these issues,this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips,termed Van-YOLOv8.Initially,to alleviate the influence of diminutive,low-resolution markings on the precision of deep learning models,we utilize an upscaling approach for enhanced resolution.This technique relies on the Super-Resolution Generative Adversarial Network with Extended Training(SRGANext)network,facilitating the reconstruction of high-fidelity images that align with input specifications.Subsequently,we replace the original YOLOv8smodel’s backbone feature extraction network with the lightweight VanillaNetwork(VanillaNet),simplifying the branch structure to reduce network parameters.Finally,a Hybrid Attention Mechanism(HAM)is implemented to capture essential details from input images,improving feature representation while concurrently expediting model inference speed.Experimental results demonstrate that the Van-YOLOv8 network outperforms the original YOLOv8s on a recycled chip dataset in various aspects.Significantly,it demonstrates superiority in parameter count,computational intricacy,precision in identifying targets,and speed when compared to certain prevalent algorithms in the current landscape.The proposed approach proves promising for real-time detection of recycled chips in practical factory settings. 展开更多
关键词 Lightweight neural networks attention mechanisms image super-resolution enhancement feature extraction small object detection
下载PDF
Industrial Fusion Cascade Detection of Solder Joint
17
作者 Chunyuan Li Peng Zhang +2 位作者 Shuangming Wang Lie Liu Mingquan Shi 《Computers, Materials & Continua》 SCIE EI 2024年第10期1197-1214,共18页
With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,de... With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area. 展开更多
关键词 Cascade object detection deep learning feature fusion multi-scale and multi-template matching solder joint dataset
下载PDF
Faster AMEDA-A Hybrid Mesoscale Eddy Detection Algorithm
18
作者 Xinchang Zhang Xiaokang Pan +3 位作者 Rongjie Zhu Runda Guan Zhongfeng Qiu Biao Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1827-1846,共20页
Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial,while the academia has invented many traditional physical methods with accurate ... Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical simulations is crucial,while the academia has invented many traditional physical methods with accurate detection capability,but their detection computational efficiency is low.In recent years,with the increasing application of deep learning in ocean feature detection,many deep learning-based eddy detection models have been developed for more effective eddy detection from ocean data.But it is difficult for them to precisely fit some physical features implicit in traditional methods,leading to inaccurate identification of ocean eddies.In this study,to address the low efficiency of traditional physical methods and the low detection accuracy of deep learning models,we propose a solution that combines the target detection model Faster Region with CNN feature(Faster R-CNN)with the traditional dynamic algorithm Angular Momentum Eddy Detection and Tracking Algorithm(AMEDA).We use Faster R-CNN to detect and generate bounding boxes for eddies,allowing AMEDA to detect the eddy center within these bounding boxes,thus reducing the complexity of center detection.To demonstrate the detection efficiency and accuracy of this model,this paper compares the experimental results with AMEDA and the deep learningbased eddy detection method eddyNet.The results show that the eddy detection results of this paper are more accurate than eddyNet and have higher execution efficiency than AMEDA. 展开更多
关键词 Mesoscale eddy detection object detection contour detection remote sensing
下载PDF
CAW-YOLO:Cross-Layer Fusion and Weighted Receptive Field-Based YOLO for Small Object Detection in Remote Sensing
19
作者 Weiya Shi Shaowen Zhang Shiqiang Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3209-3231,共23页
In recent years,there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks.Despite these efforts,the detection of small objects in re... In recent years,there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks.Despite these efforts,the detection of small objects in remote sensing remains a formidable challenge.The deep network structure will bring about the loss of object features,resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers.Additionally,the features of small objects are susceptible to interference from background features contained within the image,leading to a decline in detection accuracy.Moreover,the sensitivity of small objects to the bounding box perturbation further increases the detection difficulty.In this paper,we introduce a novel approach,Cross-Layer Fusion and Weighted Receptive Field-based YOLO(CAW-YOLO),specifically designed for small object detection in remote sensing.To address feature loss in deep layers,we have devised a cross-layer attention fusion module.Background noise is effectively filtered through the incorporation of Bi-Level Routing Attention(BRA).To enhance the model’s capacity to perceive multi-scale objects,particularly small-scale objects,we introduce a weightedmulti-receptive field atrous spatial pyramid poolingmodule.Furthermore,wemitigate the sensitivity arising from bounding box perturbation by incorporating the joint Normalized Wasserstein Distance(NWD)and Efficient Intersection over Union(EIoU)losses.The efficacy of the proposedmodel in detecting small objects in remote sensing has been validated through experiments conducted on three publicly available datasets.The experimental results unequivocally demonstrate the model’s pronounced advantages in small object detection for remote sensing,surpassing the performance of current mainstream models. 展开更多
关键词 Small object detection attention mechanism cross-layer fusion discrete cosine transform
下载PDF
Learning Discriminatory Information for Object Detection on Urine Sediment Image
20
作者 Sixian Chan Binghui Wu +2 位作者 Guodao Zhang Yuan Yao Hongqiang Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期411-428,共18页
In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,... In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5. 展开更多
关键词 Object detection attention mechanism medical image urine sediment
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部