期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
On-line detecting of transformer winding deformation based on parameter identification of leakage inductance
1
作者 郝治国 张保会 李朋 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第1期24-28,共5页
Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor ... Transformers are required to demonstrate the ability to withstand short circuit currents.Over currents caused by short circuit can give rise to windings deformation.In this paper,a novel method is proposed to monitor the state of transformer windings,which is achieved through on-line detecting the leakage inductance of the windings.Specifically,the mathematical model is established for online identifying the leakage inductance of the windings by applying least square algorithm(LSA) to the equivalent circuit equations.The effect of measurement and model inaccuracy on the identification error is analyzed,and the corrected model is also given to decrease these adverse effect on the results.Finally,dynamic test is carried out to verify our method.The test results clearly show that our method is very accurate even under the fluctuation of load or power factor.Therefore,our method can be effectively used to on-line detect the windings deformation. 展开更多
关键词 Leakage inductance parameter identification windings deformation on-line monitoring least square equivalent circuit equation
下载PDF
On-line Chatter Detection Using an Improved Support Vector Machine 被引量:1
2
作者 Changfu LIU Wenxiang ZHANG 《Instrumentation》 2019年第2期2-7,共6页
On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on ... On-line chatter detection can avoid unstable cutting through monitoring the machining process.In order to identify chatter in a timely manner,an improved Support Vector Machine(SVM)is developed in this paper,based on extracted features.In the SVM model,the penalty factor(e)and the core parameter(g)have important influence on the classification,more than from Kernel Functions(KFs).Hence,first the classification results are conducted using different KFs.Then two methods are presented for exploring the best parameters.The chatter identification results show that the Genetic Algorithm(GA)approach is more suitable for deciding the parameters than the Grid Explore(GE)approach. 展开更多
关键词 on-line Chatter DETECTION Support VECTOR MACHINE parametER Optimization GENETIC Algorithms
下载PDF
Fuzzy Shape Control Based on El man Dynamic Recursion Network Prediction Model 被引量:3
3
作者 JIA Chun-yu LIU Hong-min 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第1期31-35,共5页
In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model... In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model, the fuzzy control method was used to control the shape on four-high cold mill. The simulation results showed that the system can be applied to real time on line control of the shape. 展开更多
关键词 shape prediction shape control Elman dynamic recursion network parameter self-adjusting fuzzy control
下载PDF
Online model identification of lithium-ion battery for electric vehicles 被引量:3
4
作者 胡晓松 孙逢春 邹渊 《Journal of Central South University》 SCIE EI CAS 2011年第5期1525-1531,共7页
In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery o... In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles. 展开更多
关键词 battery model on-line parameter identification lithium-ion battery electric vehicle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部