最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS...最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。展开更多
针对风力发电机组变桨系统故障诊断模型参数难以优化问题,提出了基于状态转移算法优化多类最优间隔分布机(multi-class Optimal Margin Distribution Machine optimized by the State Transition Algorithm,mcODM-STA)的风电机组变桨系...针对风力发电机组变桨系统故障诊断模型参数难以优化问题,提出了基于状态转移算法优化多类最优间隔分布机(multi-class Optimal Margin Distribution Machine optimized by the State Transition Algorithm,mcODM-STA)的风电机组变桨系统故障诊断方法.该方法选择风电机组功率输出作为主要状态参数,利用Pearson相关系数对风电数据采集与监视控制系统中风电机组历史运行数据进行相关性分析,剔除与功率输出状态参数相关性较低的特征,对余下特征进行二次分析,减少样本特征.将数据集分为训练集和测试集,训练集用来训练所提故障诊断模型,测试集用来进行测试.利用国内风电场实际运行数据进行实验验证.实验结果表明,与其他多种参数优化方法相比,所提方法故障诊断准确率和Kappa系数更高.展开更多
分散电源(distributed generator,DG)并网将会对配电系统产生诸多影响。定量分析了异步型DG并网对配电网静态电压稳定性的影响,提出了考虑静态电压稳定裕度变化量(change of steady-state voltage stabilitymargin,CSVSM)约束的用户自...分散电源(distributed generator,DG)并网将会对配电系统产生诸多影响。定量分析了异步型DG并网对配电网静态电压稳定性的影响,提出了考虑静态电压稳定裕度变化量(change of steady-state voltage stabilitymargin,CSVSM)约束的用户自备分散电源准入功率计算模型。分析了异步型DG不同无功补偿容量对其准入功率的影响。杭州局某配电网的实例仿真计算结果验证了所提模型的有效性及合理性。该模型对分布式发电发展初期用户自备异步型DG的规划、运行和调度等都具有重要的指导意义。展开更多
在大型软件项目的开发与维护中,从大量的代码文件中定位软件缺陷费时、费力,有效地进行软件缺陷自动定位,将能极大地降低开发成本.软件缺陷报告通常包含了大量未发觉的软件缺陷的信息,精确地寻找与缺陷报告相关联的代码文件,对于降低维...在大型软件项目的开发与维护中,从大量的代码文件中定位软件缺陷费时、费力,有效地进行软件缺陷自动定位,将能极大地降低开发成本.软件缺陷报告通常包含了大量未发觉的软件缺陷的信息,精确地寻找与缺陷报告相关联的代码文件,对于降低维护成本具有重要意义.目前,已有一些基于深度神经网络的缺陷定位技术相对于传统方法,其效果有所提升,但相关工作大多关注网络结构的设计,缺乏对训练过程中损失函数的研究,而损失函数对于预测任务的性能会有极大的影响.在此背景下,提出了代价敏感的间隔分布优化(cost-sensitive margin distribution optimization,简称CSMDO)损失函数,并将代价敏感的间隔分布优化层应用到深度卷积神经网络中,能够良好地处理软件缺陷数据的不平衡性,进一步提高缺陷定位的准确度.展开更多
文摘最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。
文摘针对风力发电机组变桨系统故障诊断模型参数难以优化问题,提出了基于状态转移算法优化多类最优间隔分布机(multi-class Optimal Margin Distribution Machine optimized by the State Transition Algorithm,mcODM-STA)的风电机组变桨系统故障诊断方法.该方法选择风电机组功率输出作为主要状态参数,利用Pearson相关系数对风电数据采集与监视控制系统中风电机组历史运行数据进行相关性分析,剔除与功率输出状态参数相关性较低的特征,对余下特征进行二次分析,减少样本特征.将数据集分为训练集和测试集,训练集用来训练所提故障诊断模型,测试集用来进行测试.利用国内风电场实际运行数据进行实验验证.实验结果表明,与其他多种参数优化方法相比,所提方法故障诊断准确率和Kappa系数更高.
文摘分散电源(distributed generator,DG)并网将会对配电系统产生诸多影响。定量分析了异步型DG并网对配电网静态电压稳定性的影响,提出了考虑静态电压稳定裕度变化量(change of steady-state voltage stabilitymargin,CSVSM)约束的用户自备分散电源准入功率计算模型。分析了异步型DG不同无功补偿容量对其准入功率的影响。杭州局某配电网的实例仿真计算结果验证了所提模型的有效性及合理性。该模型对分布式发电发展初期用户自备异步型DG的规划、运行和调度等都具有重要的指导意义。
文摘在大型软件项目的开发与维护中,从大量的代码文件中定位软件缺陷费时、费力,有效地进行软件缺陷自动定位,将能极大地降低开发成本.软件缺陷报告通常包含了大量未发觉的软件缺陷的信息,精确地寻找与缺陷报告相关联的代码文件,对于降低维护成本具有重要意义.目前,已有一些基于深度神经网络的缺陷定位技术相对于传统方法,其效果有所提升,但相关工作大多关注网络结构的设计,缺乏对训练过程中损失函数的研究,而损失函数对于预测任务的性能会有极大的影响.在此背景下,提出了代价敏感的间隔分布优化(cost-sensitive margin distribution optimization,简称CSMDO)损失函数,并将代价敏感的间隔分布优化层应用到深度卷积神经网络中,能够良好地处理软件缺陷数据的不平衡性,进一步提高缺陷定位的准确度.