For enhancing the control effectiveness,we firstly design a fuzzy logic based sliding mode controller(FSMC)for nonlinear crane systems.On basis of overhead crane dynamic characteristic,the sliding mode function with r...For enhancing the control effectiveness,we firstly design a fuzzy logic based sliding mode controller(FSMC)for nonlinear crane systems.On basis of overhead crane dynamic characteristic,the sliding mode function with regard to trolley position and payload angle.Additionally,in order to eliminate the chattering problem of sliding mode control,the fuzzy logic theory is adopted to soften the control performance.Moreover,aiming at the FSMC parameter setting problem,a DE algorithm based optimization scheme is proposed for enhancing the control performance.Finally,by implementing the computer simulation,the DE based FSMC can effectively tackle the overhead crane sway problem and avoid unexpected accident greatly.展开更多
This paper focuses on the simulation and test of the switched reluctance starter/generator systems. Through the emulational analysis of the initial starting torque, the optimal turn-on section of the power switches is...This paper focuses on the simulation and test of the switched reluctance starter/generator systems. Through the emulational analysis of the initial starting torque, the optimal turn-on section of the power switches is discovered. The fundamental theory of the generating operation is analyzed with the linearity model, and a new method is presented based on voltage pulse width modulation for the generating mode control. Through the steady-state and optimized emulation of the output power and system efficiency, the optimizational control approach for the generating mode over a wide speed range is introduced. At last, the test of the 3KW prototype system shows that the dynamic and static performance of this system is fine.展开更多
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multip...Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.展开更多
The controlled objects are uncertain stable,but the optimal control systems which are constituted by the controlled objects under certain conditions are certain stable. This paper analyses stability of optimal control...The controlled objects are uncertain stable,but the optimal control systems which are constituted by the controlled objects under certain conditions are certain stable. This paper analyses stability of optimal control systems which have quadric performance index via Liapunov method.展开更多
A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is...A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.展开更多
I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for th...I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-展开更多
Due to the importance and role of systems engineering in space mission developments, optimization of Omid's systems engineering as a milestone to its current and future generations is focused. In this regard systems ...Due to the importance and role of systems engineering in space mission developments, optimization of Omid's systems engineering as a milestone to its current and future generations is focused. In this regard systems engineering management organization as the basis of optimization work flow in the conceptual design phase is proposed for improvement. To improve the systems engineering management, an agile enhanced organization chart is developed that defines various system duties. This is a type of concurrent engineering approach that promotes direct communication and data interchange between the team members. Due to the importance of decision making in the conceptual design phase, two design matrices are constructed that portray merits of various design options in terms of improved satellite life as well as specific choices of remote sensing capability for the Omid second generation(Omid-2). Conceptual design optimization is explored considering several structural objectives as well as optimal solar energy absorption utilizing a multiple criteria decision making approach. The Eigenvector method is utilized to formulate the objective function via expert judgment. This approach is robust with respect to designer probable miss-judgment. The optimized version of Omid-2 turned out to be a passive Z-axis spin stabilized satellite made of hexagonal honeycomb configuration with carbon-epoxy side panels and Aluminum bottom plate.展开更多
Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biolo...Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.展开更多
In this paper a critical assessment and optimization of the phase diagrams and thermodynamic properties of the PrCl_3-MCl(M=Li,Na)and PrCl_3-MCl_2(M=Mg,Ca,Sr,Ba) binary systems have been per- formed.The assessed and o...In this paper a critical assessment and optimization of the phase diagrams and thermodynamic properties of the PrCl_3-MCl(M=Li,Na)and PrCl_3-MCl_2(M=Mg,Ca,Sr,Ba) binary systems have been per- formed.The assessed and optimized binary phase diagrams and thermodynamic data with self consistency are a better basis for constructing multicomponent phase diagrams.展开更多
An optimal guidance law based on missile-target line-of-sight (LOS) angular rate is presented for intercepting a nonmaneuvering target. It is then integrated with sliding-mode control theory by using reaching-law of s...An optimal guidance law based on missile-target line-of-sight (LOS) angular rate is presented for intercepting a nonmaneuvering target. It is then integrated with sliding-mode control theory by using reaching-law of sliding-mode, in order to derive an optimal sliding-mode guidance law for intercepting a maneuvering target. The new guidance method's robustness against target maneuvers and good miss distance performance are proved by the second method of Lyapunov and simulation results. The presented guidance law is simple to implement in practical applications.展开更多
The structure of the optimal solution set is derived for linear fractional programming with the representation theorem of polyhedral sets. Based on an adaptation of the convex simplex method credited to Gilmore and Go...The structure of the optimal solution set is derived for linear fractional programming with the representation theorem of polyhedral sets. Based on an adaptation of the convex simplex method credited to Gilmore and Gomory, we give the uniqueness condition of optimal solution and the computational procedures to find all optimal solutions if the uniqueness condition is not satisfied. Finally, an illustrative example is also given.展开更多
Returning to moon has become a top topic recently. Many studies have shown that soft landing is a challenging problem in lunar exploration. The lunar soft landing in this paper begins from a 100 km circular lunar park...Returning to moon has become a top topic recently. Many studies have shown that soft landing is a challenging problem in lunar exploration. The lunar soft landing in this paper begins from a 100 km circular lunar parking orbit. Once the landing area has been selected and it is time to deorbit for landing, a ΔV burn of 19.4 m/s is performed to establish a 100×15 km elliptical orbit. At perilune, the landing jets are ignited, and a propulsive landing is performed. A guidance and control scheme for lunar soft landing is proposed in the paper, which combines optimal theory with nonlinear neuro-control. Basically, an optimal nonlinear control law based on artificial neural network is presented, on the basis of the optimum trajectory from perilune to lunar surface in terms of Pontryagin's maximum principle according to the terminal boundary conditions and performance index. Therefore some optimal control laws can be carried out in the soft landing system due to the nonlinear mapping function of the neural network. The feasibility and validity of the control laws are verified in a simulation experiment.展开更多
In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and suf...In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and sufficient condition for the existence of positive definite solutions of the Riccati- Ito equations is obtained and an iterative solution to the Riccati- Ito equations is also given in the paper thus a complete solution to the basic problem of optimal control of time-invariant linear Ito stochastic systems is then obtained. An example is given at the end of the paper to illustrate the application of the result of the paper.展开更多
Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simp...Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simple currents. To obtain the numerical results, the usual Newton-Raphson iteration is often adopted, but its stability depends on the initial guessed solution to the governing equations. To improve the stability of numerical calculation, this paper proposed separated the particle swarm optimization, in which the variables are separated into several groups, and the dimension of search space is reduced to facilitate the particle swarm optimization. Via the separated particle swarm optimization, these governing nonlinear equations can be solved successfully with any initial solution, and the process of numerical calculation is very stable. For the calculations of cable configuration and tension of marine cables under complex currents, the proposed separated swarm particle optimization is more effective than the other particle swarm optimizations.展开更多
In this paper, we present the theory of constructing optimal generalized helical-wave coupling dynamical systems. Applying the helical-wave decomposition method to Navier-Stokes equations, we derive a pair of coupling...In this paper, we present the theory of constructing optimal generalized helical-wave coupling dynamical systems. Applying the helical-wave decomposition method to Navier-Stokes equations, we derive a pair of coupling dynamical systems based on optimal generalized helical-wave bases. Then with the method of multi-scale global optimization based on coarse graining analysis, a set of global optimal generalized helical-wave bases is obtained. Optimal generalized helical-wave bases retain the good properties of classical helical-wave bases. Moreover, they are optimal for the dynamical systems of Navier-Stokes equations, and suitable for complex physical and geometric boundary conditions. Then we find that the optimal generalized helical-wave vortexes fitted by a finite number of optimal generalized helical-wave bases can be used as the fundamental elements of turbulence, and have important significance for studying physical properties of complex flows and turbulent vortex structures in a deeper level.展开更多
This paper deals with the problem of planned lead time calculation in a Material Requirement Planning (MRP) environment under stochastic lead times. The objective is to minimize the sum of holding and backlogging co...This paper deals with the problem of planned lead time calculation in a Material Requirement Planning (MRP) environment under stochastic lead times. The objective is to minimize the sum of holding and backlogging costs. The proposed approach is based on discrete time inventory control where the decision variables are integer. Two types of systems are considered: multi-level serial-production and assembly systems. For the serial production systems (one type of component at each level), a mathematical model is suggested. Then, it is proven that this model is equivalent to the well known discrete Newsboy Model. This directly provides the optimal values for the planned lead times. For multilevel assembly systems, a dedicated model is proposed and some properties of the decision variables and objective function are proven. These properties are used to calculate lower and upper limits on the decision variables and lower and upper bounds on the objective function. The obtained limits and bounds open the possibility to develop an efficient optimization algorithm using, for example, a Branch and Bound approach. The paper presents the proposed models in detail with corresponding proofs and se'~eral numerical examples. Some advantages of the suggested models and perspectives of this research are discussed.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada(N00892)in part by National Natural Science Foundation of China(51405436,51375452,61573174)
基金This work is supported by the Natural Science Foundation of Jiangsu Province(No.BK20160913)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.18KJB520035)+4 种基金the High Level Teacher Research Foundation of Nanjing University of Posts and Telecommunications(No.NY2016021)the Incubation Foundation of Nanjing University of Posts and Telecommunications(No.NY217055)Postdoctoral Foundation of Jiangsu Province(No.1701016A)Natural Science Foundation of China(No.61602259,No.61373135 and No.61672299)National Engineering Laboratory for Logistics Information Technology,YuanTong Express Co.LTD.
文摘For enhancing the control effectiveness,we firstly design a fuzzy logic based sliding mode controller(FSMC)for nonlinear crane systems.On basis of overhead crane dynamic characteristic,the sliding mode function with regard to trolley position and payload angle.Additionally,in order to eliminate the chattering problem of sliding mode control,the fuzzy logic theory is adopted to soften the control performance.Moreover,aiming at the FSMC parameter setting problem,a DE algorithm based optimization scheme is proposed for enhancing the control performance.Finally,by implementing the computer simulation,the DE based FSMC can effectively tackle the overhead crane sway problem and avoid unexpected accident greatly.
文摘This paper focuses on the simulation and test of the switched reluctance starter/generator systems. Through the emulational analysis of the initial starting torque, the optimal turn-on section of the power switches is discovered. The fundamental theory of the generating operation is analyzed with the linearity model, and a new method is presented based on voltage pulse width modulation for the generating mode control. Through the steady-state and optimized emulation of the output power and system efficiency, the optimizational control approach for the generating mode over a wide speed range is introduced. At last, the test of the 3KW prototype system shows that the dynamic and static performance of this system is fine.
基金Supported by the National Natural Science Foundation of China(21276078)"Shu Guang"project of Shanghai Municipal Education Commission,973 Program of China(2012CB720500)the Shanghai Science and Technology Program(13QH1401200)
文摘Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.
文摘The controlled objects are uncertain stable,but the optimal control systems which are constituted by the controlled objects under certain conditions are certain stable. This paper analyses stability of optimal control systems which have quadric performance index via Liapunov method.
文摘A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.
文摘I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-
文摘Due to the importance and role of systems engineering in space mission developments, optimization of Omid's systems engineering as a milestone to its current and future generations is focused. In this regard systems engineering management organization as the basis of optimization work flow in the conceptual design phase is proposed for improvement. To improve the systems engineering management, an agile enhanced organization chart is developed that defines various system duties. This is a type of concurrent engineering approach that promotes direct communication and data interchange between the team members. Due to the importance of decision making in the conceptual design phase, two design matrices are constructed that portray merits of various design options in terms of improved satellite life as well as specific choices of remote sensing capability for the Omid second generation(Omid-2). Conceptual design optimization is explored considering several structural objectives as well as optimal solar energy absorption utilizing a multiple criteria decision making approach. The Eigenvector method is utilized to formulate the objective function via expert judgment. This approach is robust with respect to designer probable miss-judgment. The optimized version of Omid-2 turned out to be a passive Z-axis spin stabilized satellite made of hexagonal honeycomb configuration with carbon-epoxy side panels and Aluminum bottom plate.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105062 and 11265014the Fundamental Research Funds for the Central Universities under Grant Nos LZUJBKY-2011-57 and LZUJBKY-2015-119
文摘Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
文摘In this paper a critical assessment and optimization of the phase diagrams and thermodynamic properties of the PrCl_3-MCl(M=Li,Na)and PrCl_3-MCl_2(M=Mg,Ca,Sr,Ba) binary systems have been per- formed.The assessed and optimized binary phase diagrams and thermodynamic data with self consistency are a better basis for constructing multicomponent phase diagrams.
文摘An optimal guidance law based on missile-target line-of-sight (LOS) angular rate is presented for intercepting a nonmaneuvering target. It is then integrated with sliding-mode control theory by using reaching-law of sliding-mode, in order to derive an optimal sliding-mode guidance law for intercepting a maneuvering target. The new guidance method's robustness against target maneuvers and good miss distance performance are proved by the second method of Lyapunov and simulation results. The presented guidance law is simple to implement in practical applications.
文摘The structure of the optimal solution set is derived for linear fractional programming with the representation theorem of polyhedral sets. Based on an adaptation of the convex simplex method credited to Gilmore and Gomory, we give the uniqueness condition of optimal solution and the computational procedures to find all optimal solutions if the uniqueness condition is not satisfied. Finally, an illustrative example is also given.
文摘Returning to moon has become a top topic recently. Many studies have shown that soft landing is a challenging problem in lunar exploration. The lunar soft landing in this paper begins from a 100 km circular lunar parking orbit. Once the landing area has been selected and it is time to deorbit for landing, a ΔV burn of 19.4 m/s is performed to establish a 100×15 km elliptical orbit. At perilune, the landing jets are ignited, and a propulsive landing is performed. A guidance and control scheme for lunar soft landing is proposed in the paper, which combines optimal theory with nonlinear neuro-control. Basically, an optimal nonlinear control law based on artificial neural network is presented, on the basis of the optimum trajectory from perilune to lunar surface in terms of Pontryagin's maximum principle according to the terminal boundary conditions and performance index. Therefore some optimal control laws can be carried out in the soft landing system due to the nonlinear mapping function of the neural network. The feasibility and validity of the control laws are verified in a simulation experiment.
基金Supported by the National Natural Science Foundation of China(Nos.11172197,11332008 and 11572215)the Natural Science Foundation of Tianjin through a key-project Grant(12JCZDJC30400)the UC MEXUS-CONACy T through the project Hybridizing Set Oriented Methods and Evolutionary Strategies to Obtain Fast and Reliable Multi-objective Optimization Algorithms
文摘In this paper, the matrix algebraic equations involved in the optimal control problem of time-invariant linear Ito stochastic systems, named Riccati- Ito equations in the paper, are investigated. The necessary and sufficient condition for the existence of positive definite solutions of the Riccati- Ito equations is obtained and an iterative solution to the Riccati- Ito equations is also given in the paper thus a complete solution to the basic problem of optimal control of time-invariant linear Ito stochastic systems is then obtained. An example is given at the end of the paper to illustrate the application of the result of the paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.51009092 and 51279107)the Scientific Research Foundation of State Education Ministry for the Returned Overseas Chinese Scholars
文摘Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simple currents. To obtain the numerical results, the usual Newton-Raphson iteration is often adopted, but its stability depends on the initial guessed solution to the governing equations. To improve the stability of numerical calculation, this paper proposed separated the particle swarm optimization, in which the variables are separated into several groups, and the dimension of search space is reduced to facilitate the particle swarm optimization. Via the separated particle swarm optimization, these governing nonlinear equations can be solved successfully with any initial solution, and the process of numerical calculation is very stable. For the calculations of cable configuration and tension of marine cables under complex currents, the proposed separated swarm particle optimization is more effective than the other particle swarm optimizations.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11372068 and 11572350)the National Basic Research Program of China (Grant No. 2014CB744104)
文摘In this paper, we present the theory of constructing optimal generalized helical-wave coupling dynamical systems. Applying the helical-wave decomposition method to Navier-Stokes equations, we derive a pair of coupling dynamical systems based on optimal generalized helical-wave bases. Then with the method of multi-scale global optimization based on coarse graining analysis, a set of global optimal generalized helical-wave bases is obtained. Optimal generalized helical-wave bases retain the good properties of classical helical-wave bases. Moreover, they are optimal for the dynamical systems of Navier-Stokes equations, and suitable for complex physical and geometric boundary conditions. Then we find that the optimal generalized helical-wave vortexes fitted by a finite number of optimal generalized helical-wave bases can be used as the fundamental elements of turbulence, and have important significance for studying physical properties of complex flows and turbulent vortex structures in a deeper level.
文摘This paper deals with the problem of planned lead time calculation in a Material Requirement Planning (MRP) environment under stochastic lead times. The objective is to minimize the sum of holding and backlogging costs. The proposed approach is based on discrete time inventory control where the decision variables are integer. Two types of systems are considered: multi-level serial-production and assembly systems. For the serial production systems (one type of component at each level), a mathematical model is suggested. Then, it is proven that this model is equivalent to the well known discrete Newsboy Model. This directly provides the optimal values for the planned lead times. For multilevel assembly systems, a dedicated model is proposed and some properties of the decision variables and objective function are proven. These properties are used to calculate lower and upper limits on the decision variables and lower and upper bounds on the objective function. The obtained limits and bounds open the possibility to develop an efficient optimization algorithm using, for example, a Branch and Bound approach. The paper presents the proposed models in detail with corresponding proofs and se'~eral numerical examples. Some advantages of the suggested models and perspectives of this research are discussed.