In comparison to inorganic counterparts,organic semiconducting(OSC)crystalline films are promising for building large-area and flexible ionizing radiation detectors for X-ray imaging or dosimetry due to their tissue e...In comparison to inorganic counterparts,organic semiconducting(OSC)crystalline films are promising for building large-area and flexible ionizing radiation detectors for X-ray imaging or dosimetry due to their tissue equivalence,simple processing and large-scale production accessibility.Fabrication processes,how-ever,hinder the ability to generate aligned and large-area films with high carrier mobility.In this work,the space-confined melt process is used to produce highly orientated 4HCB(4-hydroxycyanobenzene)OSC films with a large area of 15×18 mm^(2).The out-of-plane direction of the 4HCB film is<001>,and the benzene rings are found to be extensively overlapped inside the in-plane direction,according to the XRD patterns.The film exhibits a high resistivity up to 1012cm,and high hole mobility of 10.62 cm^(2)V^(−1)s^(−1).Furthermore,the 4HCB(80μm-thick film)based X-ray detectors can achieve a sensitivity of 93μC Gy air^(−1) cm^(−2)and on/offratio of 157.The device also shows steady flexibility,with no degradation in detecting function after 100 cycles of bending.Finally,the proposed 4HCB film detectors demonstrated a high-resolution X-ray imaging capability.The imaging of several materials with sharp edges(copper and polytetrafluoroethylene)has been obtained.This work has developed a fast but efficient approach for producing large-area,highly oriented OSC films for high-performance X-ray detectors.展开更多
Chemical vapor deposition is a conventional synthesis method for growing large-scale and high-quality two-dimensional materials,such as graphene,hexagonal boron nitride,and transition-metal dichalcogenides.For organic...Chemical vapor deposition is a conventional synthesis method for growing large-scale and high-quality two-dimensional materials,such as graphene,hexagonal boron nitride,and transition-metal dichalcogenides.For organic films,solution-based methods,such as inkjet printing,spin coating,and drop and micro-contact printing,are commonly used.Herein,we demonstrate a general method for growing wafer-scale continuous,uniform,and ultrathin(2-5 nm)organic films.This method is based on a copper(Cu)surfacemediated reaction and polymerization of several equivalent bromine(Br)-containingπ-conjugated small molecules(C_(12)S_(3)Br_(6),C_(24)H_(4)O_(2)Br_(2),and C_(24)H_(12)Br_(2)N_(4)),in which local surface-mediated polymerization and internalπ-πinteractions among organic molecules are responsible for the dimension and uniformity control of the thin films.Specifically,the growth rate and morphology of thin films were found to be Cu-facet-dependent,and single-crystal Cu(111)surfaces could improve the uniformity of thin films.In addition,the number of Br groups and size of organic molecules were critical for crystallinity and thin-film formation.This method can be used to fabricate heterostructures,such as organic film/graphene,giving room for various functional materials and device applications.展开更多
Molecular packing patterns are crucial factors determining electron/energy transfer processes that are critical for the optoelectronic properties of organic thin film devices.Herein,the polarization-selective ultravio...Molecular packing patterns are crucial factors determining electron/energy transfer processes that are critical for the optoelectronic properties of organic thin film devices.Herein,the polarization-selective ultraviolet/infrared(UV/IR)mixed frequency ultrafast spectroscopy is applied to investigate the relative molecular orientations in two organic thin films of 7-(diethylamino)coumarin-3-carboxylic acid(DEAC)and perylene.The signal anisotropy changes caused by intermolecular energy/electron transfers are utilized to calculate the cross angles between the electronic transition dipole moment of the donor and the vibrational transition dipole moments of the acceptor,yielding the relative orientation between two adjacent molecules.Using this method,the relative orientation angle in DEAC film is determined to be 53.4°,close to 60°of its single crystalline structure,and that of the perylene film is determined to be 6.2°,also close to-0.2°of its single crystalline structure.Besides experimental uncertainties,the small difference between the angles determined by this method and those of single crystals also results from the fact that the thin film samples are polycrystalline where some of the molecules are amorphous.展开更多
To deal with the invalidation of commonly employed series model and parallel model in capacitance-voltage(C-V)characterization of organic thin films when current injection is significant,a three-element equivalent cir...To deal with the invalidation of commonly employed series model and parallel model in capacitance-voltage(C-V)characterization of organic thin films when current injection is significant,a three-element equivalent circuit model is proposed.On this basis,the expression of real capacitance in consideration of current injection is theoretically derived by small-signal analysis method.The validity of the proposed equivalent circuit and theoretical expression are verified by a simulating circuit consisting of a capacitor,a diode,and a resistor.Moreover,the accurate C-V characteristic of an organic thin film device is obtained via theoretical correction of the experimental measuring result,and the real capacitance is 35.7%higher than the directly measured capacitance at 5-V bias in the parallel mode.This work strongly demonstrates the necessity to consider current injection in C-V measurement and provides a strategy for accurate C-V characterization experimentally.展开更多
The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source-drain electrode and pentacene to reduce the contact resistance. By a 3 nm C6...The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source-drain electrode and pentacene to reduce the contact resistance. By a 3 nm C60 modification, the injection barrier is lowered and the contact resistance is reduced. Thus, the field-effect mobility increases from 0.12 to 0.52 cm2/(V.s). It means that inserting a C60 ultra thin layer is a good method to improve the organic thin film transistor (OTFT) performance. The output curve is simulated by using a charge drift model. Considering the contact effect, the field effect mobility is improved to 1.15 cm2/(V-s). It indicates that further reducing the contact resistance of OTFTs should be carried out.展开更多
Long life green emitting matrix display based on organic light emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm 2, and the pixel gap 0.1 mm. An image with no crossta...Long life green emitting matrix display based on organic light emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm 2, and the pixel gap 0.1 mm. An image with no crosstalk between pixels is obtained. The average luminance of these pixels at duty cycle of 1/64 is 100 cd/m 2, and the power consumption is 0.6 W. The dark room contrast of 1∶100 is achieved without using a polarization filter.展开更多
A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vac...A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vacuum deposited by weak epitaxial growth(WEG) method were acquired with polarized optical microscopy(POM). Then morphology properties including crystal grain size, distribution, relative orientation, and crystallinity were derived from these images by fitting with a transition dipole model. At last, atomic force microscopy(AFM) imaging was carried out to confirm the fitting and serve as absolute references. This method can be readily generalized to other organic polycrystalline films, thus providing an efficient way to access the large-scale morphologic properties of organic polycrystalline films, which may prove to be useful in industry as a film quality monitoring method.展开更多
We report on a forest-like-to-desert-like pattern evolution in the growth of an organic thin film observed by using an atomic force microscope. We use a modified diffusion limited aggregation model to simulate the gro...We report on a forest-like-to-desert-like pattern evolution in the growth of an organic thin film observed by using an atomic force microscope. We use a modified diffusion limited aggregation model to simulate the growth process and are able to reproduce the experimental patterns. The energy of electric dipole interaction is calculated and determined to be the driving force for the pattern formation and evolution. Based on these results, single crystalline films are obtained by enhancing the electric dipole interaction while limiting effects of other growth parameters.展开更多
The contact-size-dependent characteristic of cutoff frequency fT in bottom-contact organic thin film transistors (OTFTs) is studied. The effects of electrode thickness, field-effect mobility, channel length and gate...The contact-size-dependent characteristic of cutoff frequency fT in bottom-contact organic thin film transistors (OTFTs) is studied. The effects of electrode thickness, field-effect mobility, channel length and gate-source voltage on the contact length (source and drain electrodes' length) related contact resistance of bottom-contact OTFTs are performed with a modified transmission line model. It is found that the contact resistance increases dramatically when the contact length is scaled down to 20O nm. With the help of the contact length related contact resistance, contact-size-dependent fT Of bottom-contact OTFTs is studied and it is found that fr increases with the decrease of the contact length in bottom-contact OTFTs.展开更多
Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly dop...Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly doped Si as the gate electrode and substrate with plasma-enhanced chemical vapor deposited (PECVD) silicon nitride as gate dielectric. Pentacene thin films were deposited by thermal evaporation on dielectrics as the active layer, then RF-magnetron sputtered amorphous aluminium was used as the source and drain contacts. Measurement results show that field effect mobility and threshold voltage are 0.043 cm2/(V·s) and 12.6 V, respectively, and on-off current ratio is nearly 1×103.展开更多
Organic electroluminescent thin film using Znq 2 (Znq 2) as the emitting layer material with structure of glass/ITO/Znq 2/Al (cell)was fabricated. The V I curve, V B curve and electroluminescent spectra of the cell we...Organic electroluminescent thin film using Znq 2 (Znq 2) as the emitting layer material with structure of glass/ITO/Znq 2/Al (cell)was fabricated. The V I curve, V B curve and electroluminescent spectra of the cell were measured. Meanwhile the fluorescent spectra, excited spectra and absorption spectra of Znq 2 with powder and film states were also measured.展开更多
Organic thin film transistors based on an F<sub>16</sub>CuPc/α6T pn heterojunction have been fabricated and analyzed to investigate the temperature dependence of electrical properties and apply in tempera...Organic thin film transistors based on an F<sub>16</sub>CuPc/α6T pn heterojunction have been fabricated and analyzed to investigate the temperature dependence of electrical properties and apply in temperature sensors. The mobility follows a thermally activated hopping process. At temperatures over 200 K, the value of thermal activation energy (E<sub>A</sub>) is 40. 1 meV, similar to that of the single-layer device. At temperatures ranging from 100 to 200 K, we have a second regime with a much lower E<sub>A</sub> of 16.3 meV, where the charge transport is dominated by shallow traps. Similarly, at temperatures above 200 K, threshold voltage (V<sub>T</sub>) increases linearly with decreasing temperature, and the variations of V<sub>T</sub> of 0.185 V/K is larger than the variation of V<sub>T</sub> (~0.020 V/K) in the single layer devices. This result is due to the interface dipolar charges. At temperatures ranging from 100 K to 200 K, we have a second regime with much lower variations of 0.090 V/K. By studying gate voltage (V<sub>G</sub>)-dependence temperature variation factor (k), the maximum value of k (~0.11 dec/K) could be obtained at V<sub>G</sub> = 5 V. Furthermore, the pn heterojunction device could be characterized as a temperature sensor well working at low operating voltages.展开更多
Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of...Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of the samples are characterized by atomic force microscopy. The full width at half maximum (FWHM) of the HVPE sample shows a W-shape and that of the MOVPE sample shows an M-shape plane with the degree of 0 in the high-resolution x-ray diffraction (HRXRD) results. The surface morphology attributes to this significant anisotropic. HRXRD reveals that there is a significant reduction in the FWHM, both on-axis and off-axis for HVPE GaN are compared with the MOVPE template. The decrease of the FWHM of E2 (high) Raman scat tering spectra further indicates the improvement of crystal quality after HVPE. By comparing the results of secondary- ion-mass spectroscope and photoluminescence spectrum of the samples grown by HVPE and MOVPE, we propose that C-involved defects are originally responsible for the yellow luminescence.展开更多
This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C6...This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C60 film were carefully investigated. By choosing different source/drain electrodes, a device with good performance can be obtained. The highest electron field effect mobility about 1.15 cm2/(V. s) could reach when Barium was introduced as electrodes. Moreover, the C60 transistor shows a negligible 'hysteresis effect' contributed to the hydroxyl-free of insulator. The result suggests that polymer dielectrics are promising in applications among n-type organic transistors.展开更多
An organics/metal Schottky diode is fabricated using 3, 4: 9, 10-perylenetetracarboxylic- dianhydride(PTCDA) thin film sandwiched between ITO and Au by simple thermal evaporation technique. The current-voltage(I-V...An organics/metal Schottky diode is fabricated using 3, 4: 9, 10-perylenetetracarboxylic- dianhydride(PTCDA) thin film sandwiched between ITO and Au by simple thermal evaporation technique. The current-voltage(I-V) characteristics are investigated at room temperature in open air. The results show the rectification ratio is in excess of 100. From the capacitance-frequency(C-f) and capacitance-voltage(C-V) measurements, the Schottky barrier height between 0.2-0.3 eV is obtained according to standard Schottky theory.展开更多
Organic electroluminescent thin film using TPD as an emitting layer with structure of Glass/ITO/TPD/Al is fabricated. Its V-I curve, V-B curve and electroluminescent spectra are measured and analysed.The blue emission...Organic electroluminescent thin film using TPD as an emitting layer with structure of Glass/ITO/TPD/Al is fabricated. Its V-I curve, V-B curve and electroluminescent spectra are measured and analysed.The blue emission with luminance of 0.74 cd/m 2 and luminous efficiency of 1.35×10 -3 lm/W is achieved at DC voltage of 24 V.展开更多
Copper phthalocyanine (CuPc) amorphous film was successfully deposited on a silicone substrate by physical vapor deposition. When the film was in contact with a common solvent such as aniline, 1-propanol and toluene, ...Copper phthalocyanine (CuPc) amorphous film was successfully deposited on a silicone substrate by physical vapor deposition. When the film was in contact with a common solvent such as aniline, 1-propanol and toluene, the CuPc solid film was partially dissolved followed by nucleation and crystal growth in the solution. Based on these experimental results, we propose a novel method for preparation of the organic thin film by combination of dry and wet processes.展开更多
We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be ef...We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120℃. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120℃ annealed pentacene film and n-doped electron transport layer(ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m^2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device.展开更多
Molecular structure of organic semiconductor plays a critical role in determining the performance and functionality of organic electronic devices,by optimizing the electrical,optical and physicochemical properties.Sub...Molecular structure of organic semiconductor plays a critical role in determining the performance and functionality of organic electronic devices,by optimizing the electrical,optical and physicochemical properties.Substituted alkyl chains are fundamental units in tailering the solubility and assemblability,among which the asymmetric properties have been reported as key element for controlling the packing motifs and intrinsic charge transport.Here,we expanded the scope of molecular asymmetry dependent sensing features based on a new series of naphthalene diimides(NDI)-based derivatives substituted with a same branching alkyl chain but various linear-shaped alkyl chains(Cn-).A clear molecular stacking change,from head-to-head bilayer to head-to-tail monolayer packing model,is observed based on the features of anisotropic molecular interactions with the change in the chain length.Most importantly,a unique LUMO level shift of 0.17 eV is validated for NDI-PhC4,providing a record sensitivity up to 150%to 0.01 ppb ammonia,due to the desired molecular reactivity and device amplification properties.These results indicate that asymmetric side-chain engineering opens a route for breath healthcare.展开更多
An organic thin-film transistor (OTFT) with an OTS/SiO2 bilayer gate insulator and a MoO3/AI electrode configuration between gate insulator and source/drain electrodes has been investigated. A thermally grown SiO2 l...An organic thin-film transistor (OTFT) with an OTS/SiO2 bilayer gate insulator and a MoO3/AI electrode configuration between gate insulator and source/drain electrodes has been investigated. A thermally grown SiO2 layer is used as the OTFT gate dielectric and copper phthalocyanine(CuPc) is used as an active layer. This OTS/SiO2 bilayer gate insulator configuration increases the field-effect mobility, reduces the threshold voltage, and improves the on/off ratio simultaneously. The device with a MoO3/Al electrode has shown similar Ids compared to the device with an Au electrode at the same gate voltage. Our results indicate that using a double-layer of electrodes and a double-layer of insulators is an effective way to improve OTFT performance.展开更多
基金This work was supported by the National Natural Science Foundations of China(Nos.U2032170,51872228,62104194 and 51802262)The project was also supported by the Fundamental Research Funds for the Central University(3102020QD0408 and D5000210906)+1 种基金the Natural Science Foundation of Shaanxi Province(2020JC-12)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2022-TS-07).
文摘In comparison to inorganic counterparts,organic semiconducting(OSC)crystalline films are promising for building large-area and flexible ionizing radiation detectors for X-ray imaging or dosimetry due to their tissue equivalence,simple processing and large-scale production accessibility.Fabrication processes,how-ever,hinder the ability to generate aligned and large-area films with high carrier mobility.In this work,the space-confined melt process is used to produce highly orientated 4HCB(4-hydroxycyanobenzene)OSC films with a large area of 15×18 mm^(2).The out-of-plane direction of the 4HCB film is<001>,and the benzene rings are found to be extensively overlapped inside the in-plane direction,according to the XRD patterns.The film exhibits a high resistivity up to 1012cm,and high hole mobility of 10.62 cm^(2)V^(−1)s^(−1).Furthermore,the 4HCB(80μm-thick film)based X-ray detectors can achieve a sensitivity of 93μC Gy air^(−1) cm^(−2)and on/offratio of 157.The device also shows steady flexibility,with no degradation in detecting function after 100 cycles of bending.Finally,the proposed 4HCB film detectors demonstrated a high-resolution X-ray imaging capability.The imaging of several materials with sharp edges(copper and polytetrafluoroethylene)has been obtained.This work has developed a fast but efficient approach for producing large-area,highly oriented OSC films for high-performance X-ray detectors.
基金supported by the National Basic Research Program of China(2016YFA0200101)the National Natural Science Foundation of China(21633012 and 61890940)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDB30000000)he CAS Key Research Program of Frontier Sciences(QYZDY-SSWSLH029)。
文摘Chemical vapor deposition is a conventional synthesis method for growing large-scale and high-quality two-dimensional materials,such as graphene,hexagonal boron nitride,and transition-metal dichalcogenides.For organic films,solution-based methods,such as inkjet printing,spin coating,and drop and micro-contact printing,are commonly used.Herein,we demonstrate a general method for growing wafer-scale continuous,uniform,and ultrathin(2-5 nm)organic films.This method is based on a copper(Cu)surfacemediated reaction and polymerization of several equivalent bromine(Br)-containingπ-conjugated small molecules(C_(12)S_(3)Br_(6),C_(24)H_(4)O_(2)Br_(2),and C_(24)H_(12)Br_(2)N_(4)),in which local surface-mediated polymerization and internalπ-πinteractions among organic molecules are responsible for the dimension and uniformity control of the thin films.Specifically,the growth rate and morphology of thin films were found to be Cu-facet-dependent,and single-crystal Cu(111)surfaces could improve the uniformity of thin films.In addition,the number of Br groups and size of organic molecules were critical for crystallinity and thin-film formation.This method can be used to fabricate heterostructures,such as organic film/graphene,giving room for various functional materials and device applications.
基金supported by Ministry of Science and Technology of China(No.2017YFA0204702)the National Natural Science Foundation of China(No.21627805,No.21673004,No.21804004,and No.21821004)。
文摘Molecular packing patterns are crucial factors determining electron/energy transfer processes that are critical for the optoelectronic properties of organic thin film devices.Herein,the polarization-selective ultraviolet/infrared(UV/IR)mixed frequency ultrafast spectroscopy is applied to investigate the relative molecular orientations in two organic thin films of 7-(diethylamino)coumarin-3-carboxylic acid(DEAC)and perylene.The signal anisotropy changes caused by intermolecular energy/electron transfers are utilized to calculate the cross angles between the electronic transition dipole moment of the donor and the vibrational transition dipole moments of the acceptor,yielding the relative orientation between two adjacent molecules.Using this method,the relative orientation angle in DEAC film is determined to be 53.4°,close to 60°of its single crystalline structure,and that of the perylene film is determined to be 6.2°,also close to-0.2°of its single crystalline structure.Besides experimental uncertainties,the small difference between the angles determined by this method and those of single crystals also results from the fact that the thin film samples are polycrystalline where some of the molecules are amorphous.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11874007 and 12074076).
文摘To deal with the invalidation of commonly employed series model and parallel model in capacitance-voltage(C-V)characterization of organic thin films when current injection is significant,a three-element equivalent circuit model is proposed.On this basis,the expression of real capacitance in consideration of current injection is theoretically derived by small-signal analysis method.The validity of the proposed equivalent circuit and theoretical expression are verified by a simulating circuit consisting of a capacitor,a diode,and a resistor.Moreover,the accurate C-V characteristic of an organic thin film device is obtained via theoretical correction of the experimental measuring result,and the real capacitance is 35.7%higher than the directly measured capacitance at 5-V bias in the parallel mode.This work strongly demonstrates the necessity to consider current injection in C-V measurement and provides a strategy for accurate C-V characterization experimentally.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774013,10974013,60978060 and 10804006)the Research Fund for the Doctoral Program of Higher Education,China(Grant Nos.20090009110027,20070004024 and 20070004031)+1 种基金the Beijing Municipal Science and Technology Commission(Grant No.1102028)the National Basic Research Program of China(Grant No.2010CB327704)
文摘The contact effect on the performances of organic thin film transistors is studied here. A C60 ultrathin layer is inserted between Al source-drain electrode and pentacene to reduce the contact resistance. By a 3 nm C60 modification, the injection barrier is lowered and the contact resistance is reduced. Thus, the field-effect mobility increases from 0.12 to 0.52 cm2/(V.s). It means that inserting a C60 ultra thin layer is a good method to improve the organic thin film transistor (OTFT) performance. The output curve is simulated by using a charge drift model. Considering the contact effect, the field effect mobility is improved to 1.15 cm2/(V-s). It indicates that further reducing the contact resistance of OTFTs should be carried out.
文摘Long life green emitting matrix display based on organic light emitting diode is reported. The pixel number is 96×60, equivalent pixel size 0.4×0.4 mm 2, and the pixel gap 0.1 mm. An image with no crosstalk between pixels is obtained. The average luminance of these pixels at duty cycle of 1/64 is 100 cd/m 2, and the power consumption is 0.6 W. The dark room contrast of 1∶100 is achieved without using a polarization filter.
基金Project supported by the National Natural Science Foundation of China(Grant No.20933010)the National Basic Research Program of China(Grant No.2013CB834800)
文摘A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vacuum deposited by weak epitaxial growth(WEG) method were acquired with polarized optical microscopy(POM). Then morphology properties including crystal grain size, distribution, relative orientation, and crystallinity were derived from these images by fitting with a transition dipole model. At last, atomic force microscopy(AFM) imaging was carried out to confirm the fitting and serve as absolute references. This method can be readily generalized to other organic polycrystalline films, thus providing an efficient way to access the large-scale morphologic properties of organic polycrystalline films, which may prove to be useful in industry as a film quality monitoring method.
基金Project supported by the National Natural Science Foundation of China (Grant No.10774176)the National Basic Research Program of China (Grant No.2006CB806202)
文摘We report on a forest-like-to-desert-like pattern evolution in the growth of an organic thin film observed by using an atomic force microscope. We use a modified diffusion limited aggregation model to simulate the growth process and are able to reproduce the experimental patterns. The energy of electric dipole interaction is calculated and determined to be the driving force for the pattern formation and evolution. Based on these results, single crystalline films are obtained by enhancing the electric dipole interaction while limiting effects of other growth parameters.
基金Supported by the State Key Fundamental Research Project of China under Grant No 2011CBA00606the National Natural Science Foundation of China under Grant Nos 51503167 and 61574107
文摘The contact-size-dependent characteristic of cutoff frequency fT in bottom-contact organic thin film transistors (OTFTs) is studied. The effects of electrode thickness, field-effect mobility, channel length and gate-source voltage on the contact length (source and drain electrodes' length) related contact resistance of bottom-contact OTFTs are performed with a modified transmission line model. It is found that the contact resistance increases dramatically when the contact length is scaled down to 20O nm. With the help of the contact length related contact resistance, contact-size-dependent fT Of bottom-contact OTFTs is studied and it is found that fr increases with the decrease of the contact length in bottom-contact OTFTs.
文摘Using pentacene as an active material, the organic thin film transistors were fabricated on Si3N4/p-Si substrates by using RF-magnetron sputtered amorphous aluminium as the gate electrode contact, and using highly doped Si as the gate electrode and substrate with plasma-enhanced chemical vapor deposited (PECVD) silicon nitride as gate dielectric. Pentacene thin films were deposited by thermal evaporation on dielectrics as the active layer, then RF-magnetron sputtered amorphous aluminium was used as the source and drain contacts. Measurement results show that field effect mobility and threshold voltage are 0.043 cm2/(V·s) and 12.6 V, respectively, and on-off current ratio is nearly 1×103.
文摘Organic electroluminescent thin film using Znq 2 (Znq 2) as the emitting layer material with structure of glass/ITO/Znq 2/Al (cell)was fabricated. The V I curve, V B curve and electroluminescent spectra of the cell were measured. Meanwhile the fluorescent spectra, excited spectra and absorption spectra of Znq 2 with powder and film states were also measured.
文摘Organic thin film transistors based on an F<sub>16</sub>CuPc/α6T pn heterojunction have been fabricated and analyzed to investigate the temperature dependence of electrical properties and apply in temperature sensors. The mobility follows a thermally activated hopping process. At temperatures over 200 K, the value of thermal activation energy (E<sub>A</sub>) is 40. 1 meV, similar to that of the single-layer device. At temperatures ranging from 100 to 200 K, we have a second regime with a much lower E<sub>A</sub> of 16.3 meV, where the charge transport is dominated by shallow traps. Similarly, at temperatures above 200 K, threshold voltage (V<sub>T</sub>) increases linearly with decreasing temperature, and the variations of V<sub>T</sub> of 0.185 V/K is larger than the variation of V<sub>T</sub> (~0.020 V/K) in the single layer devices. This result is due to the interface dipolar charges. At temperatures ranging from 100 K to 200 K, we have a second regime with much lower variations of 0.090 V/K. By studying gate voltage (V<sub>G</sub>)-dependence temperature variation factor (k), the maximum value of k (~0.11 dec/K) could be obtained at V<sub>G</sub> = 5 V. Furthermore, the pn heterojunction device could be characterized as a temperature sensor well working at low operating voltages.
基金Supported by the National Natural Science Foundation of China under Grant No 61204006the Fundamental Research Funds for the Central Universities under Grant No 7214570101the National Key Science and Technology Special Project under Grant No 2008ZX01002-002
文摘Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of the samples are characterized by atomic force microscopy. The full width at half maximum (FWHM) of the HVPE sample shows a W-shape and that of the MOVPE sample shows an M-shape plane with the degree of 0 in the high-resolution x-ray diffraction (HRXRD) results. The surface morphology attributes to this significant anisotropic. HRXRD reveals that there is a significant reduction in the FWHM, both on-axis and off-axis for HVPE GaN are compared with the MOVPE template. The decrease of the FWHM of E2 (high) Raman scat tering spectra further indicates the improvement of crystal quality after HVPE. By comparing the results of secondary- ion-mass spectroscope and photoluminescence spectrum of the samples grown by HVPE and MOVPE, we propose that C-involved defects are originally responsible for the yellow luminescence.
基金supported by the National Natural Science Foundation of China (Grant No. 60676033)
文摘This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C60 film were carefully investigated. By choosing different source/drain electrodes, a device with good performance can be obtained. The highest electron field effect mobility about 1.15 cm2/(V. s) could reach when Barium was introduced as electrodes. Moreover, the C60 transistor shows a negligible 'hysteresis effect' contributed to the hydroxyl-free of insulator. The result suggests that polymer dielectrics are promising in applications among n-type organic transistors.
基金National"973"Foundation of China(2005CB724501) Recreating Foundation of National Defence for ChineseAcademy of Sciences(CXJJ -145)
文摘An organics/metal Schottky diode is fabricated using 3, 4: 9, 10-perylenetetracarboxylic- dianhydride(PTCDA) thin film sandwiched between ITO and Au by simple thermal evaporation technique. The current-voltage(I-V) characteristics are investigated at room temperature in open air. The results show the rectification ratio is in excess of 100. From the capacitance-frequency(C-f) and capacitance-voltage(C-V) measurements, the Schottky barrier height between 0.2-0.3 eV is obtained according to standard Schottky theory.
文摘Organic electroluminescent thin film using TPD as an emitting layer with structure of Glass/ITO/TPD/Al is fabricated. Its V-I curve, V-B curve and electroluminescent spectra are measured and analysed.The blue emission with luminance of 0.74 cd/m 2 and luminous efficiency of 1.35×10 -3 lm/W is achieved at DC voltage of 24 V.
文摘Copper phthalocyanine (CuPc) amorphous film was successfully deposited on a silicone substrate by physical vapor deposition. When the film was in contact with a common solvent such as aniline, 1-propanol and toluene, the CuPc solid film was partially dissolved followed by nucleation and crystal growth in the solution. Based on these experimental results, we propose a novel method for preparation of the organic thin film by combination of dry and wet processes.
基金Project supported by the National Natural Science Foundation of China(Grant No.60906022)the Natural Science Foundation of Tianjin,China(Grant No.10JCYBJC01100)+1 种基金the Key Science and Technology Support Program of Tianjin,China(Grant No.14ZCZDGX00006)the National High Technology Research and Development Program of China(Grant No.2013AA014201)
文摘We chose pentacene as a hole injection layer(HIL) to fabricate the high performance blue fluorescent organic lightemitting devices(OLEDs). We found that the carrier mobility of the pentacene thin films could be efficiently improved after a critical annealing at temperature 120℃. Then we performed the tests of scanning electron microscopy, atomic force microscopy, and Kelvin probe to explore the effect of annealing on the pentacene films. The pentacene film exhibited a more crystalline form with better continuities and smoothness after annealing. The optimal device with 120℃ annealed pentacene film and n-doped electron transport layer(ETL) presents a low turn-on voltage of 2.6 V and a highest luminance of 134800 cd/m^2 at 12 V, which are reduced by 26% and improved by 50% compared with those of the control device.
基金financially supported by the National Natural Science Foundation of China(Nos.6197396,21905276)Natural Science Foundation of Beijing(No.4202077)+1 种基金Chinese Academy of Scinece(No.ZDBS-LY-SLH034)the Fundamental Research Funds for the Central Universities(No.E2ET0309X2)。
文摘Molecular structure of organic semiconductor plays a critical role in determining the performance and functionality of organic electronic devices,by optimizing the electrical,optical and physicochemical properties.Substituted alkyl chains are fundamental units in tailering the solubility and assemblability,among which the asymmetric properties have been reported as key element for controlling the packing motifs and intrinsic charge transport.Here,we expanded the scope of molecular asymmetry dependent sensing features based on a new series of naphthalene diimides(NDI)-based derivatives substituted with a same branching alkyl chain but various linear-shaped alkyl chains(Cn-).A clear molecular stacking change,from head-to-head bilayer to head-to-tail monolayer packing model,is observed based on the features of anisotropic molecular interactions with the change in the chain length.Most importantly,a unique LUMO level shift of 0.17 eV is validated for NDI-PhC4,providing a record sensitivity up to 150%to 0.01 ppb ammonia,due to the desired molecular reactivity and device amplification properties.These results indicate that asymmetric side-chain engineering opens a route for breath healthcare.
文摘An organic thin-film transistor (OTFT) with an OTS/SiO2 bilayer gate insulator and a MoO3/AI electrode configuration between gate insulator and source/drain electrodes has been investigated. A thermally grown SiO2 layer is used as the OTFT gate dielectric and copper phthalocyanine(CuPc) is used as an active layer. This OTS/SiO2 bilayer gate insulator configuration increases the field-effect mobility, reduces the threshold voltage, and improves the on/off ratio simultaneously. The device with a MoO3/Al electrode has shown similar Ids compared to the device with an Au electrode at the same gate voltage. Our results indicate that using a double-layer of electrodes and a double-layer of insulators is an effective way to improve OTFT performance.