This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analyti...This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.展开更多
This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions betwe...This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.展开更多
An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is ...An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.展开更多
Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is ...Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is important and necessary for better hydrodynamic performance.This paper focuses on the numerical investigation of trimaran hydrodynamics.The trimaran model used in this study is a 1/80 scale high-speed displacement frigate-type concept developed by the Center for Innovation in Ship Design(CISD)at Naval Surface Warfare Center,Carderock Division(NSWCCD).The numerical simulations were conducted for different outrigger positions at low and moderate Froude numbers by using commercial CFD software solving URANS equations.A verification and validation study was carried out for the numerical method in one configuration and one ship velocity.The existing experimental results for the trimaran resistance in the literature were used for validation.Five different outrigger positions were analyzed and the form factor of each configuration was calculated by the Prohaska method.The total resistance was decomposed to its components using the form factor.The interference factor was calculated for each configuration in terms of total resistance,residual resistance and wave resistance.Also,wave profiles using the longitudinal wave cuts in different locations were obtained both numerically and experimentally.It was concluded that the outrigger position had different effects on the interference,total resistance and wave profile at different Froude numbers.It was also shown that the CFD results were in good agreement with the experimental data in all configurations.In conclusion,this study presents the results of interference effects for different trimaran configurations in terms of wave resistance in addition to the total resistance and residual resistance.The numerical method was validated not only with the total resistance test data but also the longitudinal wave profiles along the hull.展开更多
There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures and core structures. The outrigger and belt truss systems are efficient structures for dr...There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures and core structures. The outrigger and belt truss systems are efficient structures for drift control and base moment reduction in tall buildings where the core alone is not rigid enough to resist lateral loads. Perimeter columns are mobilized for increasing the effective width of the structure, and they developed tension in the windward columns and compression in the leeward columns. Optimum locations for the outriggers have been studied because of the influence on the top displacement and base moment in the core. It was analyzed the optimal position for two to seven outriggers and belt trusses, aiming to achieve minimum bending moment and minimum drift.展开更多
Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method...Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method. Top-down excavation of the Metro Line 10 in Shanghai was modeled with finite element analysis software ABAQUS and parameters of subsoil were obtained by inverse analysis. Based on the finite element model and parameters, changes in the following factors were made to find more effective methods to restrain differential uplift and settlement: length of diaphragm wall, thickness of jet-grouting reinforcement layer, ways of subsoil reinforcement, sequence of pit excavation, connection between slabs and diaphragm wall or column and width of pit. Several significant results are acquired. The longer the diaphragm wall is, the greater the differential uplift between column and diaphragm wall is. Rigidity of roof slab is in general not strong enough to keep diaphragm wall and column undergoing the same uplift during excavation; Uplift at head of column and differential uplift between column and diaphragm wall decrease when subsoil from-16.6 to-43 m in pit is reinforced through jet-grouting. But, as excavation proceeds to a lower level, benefit from soil reinforcement diminishes. During the process applying vertical load, the larger the depth of diaphragm wall is, the smaller the settlement is at head of column and diaphragm wall, and the greater the differential settlement is between column and diaphragm wall. When friction connection is implemented between column, diaphragm wall and floor slabs, uplifts at head of column and diaphragm wall are larger than those of the case when tie connection is implemented, and so does differential uplift between column and diaphragm wall. The maximum deflection of diaphragm wall decreases by 58% on account of soil reinforcement in pit. The maximum deflection of diaphragm wall decreases by 61.2% when friction connection is implemented instead of tie connection.展开更多
This paper numerically investigates the influence of separation variation of the outriggers on the hydrodynamic performance of a high speed trimaran (HST) aiming at improving its applicability in diverse realistic d...This paper numerically investigates the influence of separation variation of the outriggers on the hydrodynamic performance of a high speed trimaran (HST) aiming at improving its applicability in diverse realistic disciplines. The present investigation was performed within the framework of the 2-D slender body method (SBM) by calculating the resistance of three symmetric trimaran series moving in a calm free surface of deep water. Each trimaran series comprises of 4681 configurations generated by considering 151 staggers (-50%≤a≤+ 100%), and 31 separations (100%≤β≤400%) for 81 Froude numbers (0.20≤Fn≤ 1.0). In developing the three trimaran series, Wigley-st. AMECRC-09, and NPL-4a models were used separately for both the main and side hulls of each individu;d series models. A computer macro named Tri-PL was created using the Visual Basic for Applications~. Tri-PL~ sequentially interfaced Maxsurfe then Hullspeed to generate the models of the three trimaran series together with their detailed hydrostatic particulars, followed by their resistance components. The numerical results were partially validated against the available published numerical calculations and experimental results, to benchmark the Tri-PL macro and hence to rely on the analysis outcomes. A graph template was creaLed within the framework of SigmaPlot to visualize the significant results of the Tri-PL properlv.展开更多
Lateral deflection formulas are presented for analysis of the strengthened story applied to flame-core structures. For the framecore structures with top outriggers and with middle outriggers, the relationship between ...Lateral deflection formulas are presented for analysis of the strengthened story applied to flame-core structures. For the framecore structures with top outriggers and with middle outriggers, the relationship between stiffness characteristic parameters of frame and outriggers and the top drift of structures under different loads is analyzed. It is indicated that when stiffness characteristic parameter of frame is large, outrigger efficiency for top drift reduction is low, and the mutation of internal forces occurs; when the stiffness characteristic parameter of frame is less than 3, installing the strengthened story is advantageous to frame-core structures.展开更多
基金973 Program under Grant under Grant No.2012CB723304It was partially supported by the Major Research Plan of the National Natural Science Foundation of China under Grant No.91315301-07+2 种基金in part by Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT13057the Ministry of Education Program for New Century Excellent Talents in University under Grant No.NCET-11-0914the Guangzhou Ram Scholar Program Grant No.10A032D
文摘This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.
基金Project supported by the National Natural Science Foundation of China (No. 50378041) and the Specialized Research Fund for theDoctoral Program of Higher Education (No. 20030487016), China
文摘This paper presents the restraining moments of outriggers acting on the core wall and the equation of the horizontal top deflection based on a simplified outrigger model. The deformation compatibility conditions between outriggers and core wall as well as the finite rigidities of outriggers are also considered. One case study was carried out to analyze the horizontal top deflection and the mutation of the restraining moments caused by the variation of outrigger location. The results showed that the method adopted in the paper is simple and reasonable. Some conclusions are valuable to the safety design of high-rise building structures.
文摘An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor -0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.
基金The second author was supported by the Scientific and Technological Research Council of Turkey(TUBITAK)2219 International Postdoctoral Research Fellowship Program。
文摘Trimaran hydrodynamics have been an important research topic in recent years.Trimarans have even been chosen for naval surface combatants.In this case,investigation of a trimaran with different outrigger positions is important and necessary for better hydrodynamic performance.This paper focuses on the numerical investigation of trimaran hydrodynamics.The trimaran model used in this study is a 1/80 scale high-speed displacement frigate-type concept developed by the Center for Innovation in Ship Design(CISD)at Naval Surface Warfare Center,Carderock Division(NSWCCD).The numerical simulations were conducted for different outrigger positions at low and moderate Froude numbers by using commercial CFD software solving URANS equations.A verification and validation study was carried out for the numerical method in one configuration and one ship velocity.The existing experimental results for the trimaran resistance in the literature were used for validation.Five different outrigger positions were analyzed and the form factor of each configuration was calculated by the Prohaska method.The total resistance was decomposed to its components using the form factor.The interference factor was calculated for each configuration in terms of total resistance,residual resistance and wave resistance.Also,wave profiles using the longitudinal wave cuts in different locations were obtained both numerically and experimentally.It was concluded that the outrigger position had different effects on the interference,total resistance and wave profile at different Froude numbers.It was also shown that the CFD results were in good agreement with the experimental data in all configurations.In conclusion,this study presents the results of interference effects for different trimaran configurations in terms of wave resistance in addition to the total resistance and residual resistance.The numerical method was validated not only with the total resistance test data but also the longitudinal wave profiles along the hull.
文摘There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures and core structures. The outrigger and belt truss systems are efficient structures for drift control and base moment reduction in tall buildings where the core alone is not rigid enough to resist lateral loads. Perimeter columns are mobilized for increasing the effective width of the structure, and they developed tension in the windward columns and compression in the leeward columns. Optimum locations for the outriggers have been studied because of the influence on the top displacement and base moment in the core. It was analyzed the optimal position for two to seven outriggers and belt trusses, aiming to achieve minimum bending moment and minimum drift.
基金Projects(51208071,51108312) supported by the National Natural Science Foundation of China
文摘Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method. Top-down excavation of the Metro Line 10 in Shanghai was modeled with finite element analysis software ABAQUS and parameters of subsoil were obtained by inverse analysis. Based on the finite element model and parameters, changes in the following factors were made to find more effective methods to restrain differential uplift and settlement: length of diaphragm wall, thickness of jet-grouting reinforcement layer, ways of subsoil reinforcement, sequence of pit excavation, connection between slabs and diaphragm wall or column and width of pit. Several significant results are acquired. The longer the diaphragm wall is, the greater the differential uplift between column and diaphragm wall is. Rigidity of roof slab is in general not strong enough to keep diaphragm wall and column undergoing the same uplift during excavation; Uplift at head of column and differential uplift between column and diaphragm wall decrease when subsoil from-16.6 to-43 m in pit is reinforced through jet-grouting. But, as excavation proceeds to a lower level, benefit from soil reinforcement diminishes. During the process applying vertical load, the larger the depth of diaphragm wall is, the smaller the settlement is at head of column and diaphragm wall, and the greater the differential settlement is between column and diaphragm wall. When friction connection is implemented between column, diaphragm wall and floor slabs, uplifts at head of column and diaphragm wall are larger than those of the case when tie connection is implemented, and so does differential uplift between column and diaphragm wall. The maximum deflection of diaphragm wall decreases by 58% on account of soil reinforcement in pit. The maximum deflection of diaphragm wall decreases by 61.2% when friction connection is implemented instead of tie connection.
文摘This paper numerically investigates the influence of separation variation of the outriggers on the hydrodynamic performance of a high speed trimaran (HST) aiming at improving its applicability in diverse realistic disciplines. The present investigation was performed within the framework of the 2-D slender body method (SBM) by calculating the resistance of three symmetric trimaran series moving in a calm free surface of deep water. Each trimaran series comprises of 4681 configurations generated by considering 151 staggers (-50%≤a≤+ 100%), and 31 separations (100%≤β≤400%) for 81 Froude numbers (0.20≤Fn≤ 1.0). In developing the three trimaran series, Wigley-st. AMECRC-09, and NPL-4a models were used separately for both the main and side hulls of each individu;d series models. A computer macro named Tri-PL was created using the Visual Basic for Applications~. Tri-PL~ sequentially interfaced Maxsurfe then Hullspeed to generate the models of the three trimaran series together with their detailed hydrostatic particulars, followed by their resistance components. The numerical results were partially validated against the available published numerical calculations and experimental results, to benchmark the Tri-PL macro and hence to rely on the analysis outcomes. A graph template was creaLed within the framework of SigmaPlot to visualize the significant results of the Tri-PL properlv.
基金The Natural Science Foundation of China(No.50708041)
文摘Lateral deflection formulas are presented for analysis of the strengthened story applied to flame-core structures. For the framecore structures with top outriggers and with middle outriggers, the relationship between stiffness characteristic parameters of frame and outriggers and the top drift of structures under different loads is analyzed. It is indicated that when stiffness characteristic parameter of frame is large, outrigger efficiency for top drift reduction is low, and the mutation of internal forces occurs; when the stiffness characteristic parameter of frame is less than 3, installing the strengthened story is advantageous to frame-core structures.