为在寻优过程中有效地保持算法的种群多样性,提出了一种改进的PSO(Particle Swarm Optimization)算法——PSOPC(Particle Swarm Optimizer based on Predator-prey Coevolution)。PSOPC算法将生态系统中捕食者和猎物的竞争协同进化机制...为在寻优过程中有效地保持算法的种群多样性,提出了一种改进的PSO(Particle Swarm Optimization)算法——PSOPC(Particle Swarm Optimizer based on Predator-prey Coevolution)。PSOPC算法将生态系统中捕食者和猎物的竞争协同进化机制嵌入到PSO算法中。基于PSOPC进行RFID(Radio Frequency IDentification)读写器网络调度模型的求解,根据读写器冲突关系的变化在线进行读写器的时隙分配求解与控制,在不影响读写器工作效率的同时,有效消除密集读写器环境下的读写器冲突问题,并优化整个读写器网络的工作效率。展开更多
针对带有未知参数和有界干扰的风电机组最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制问题,从风电机组的运动学和动力学模型出发,在最佳转矩控制方法的基础上提出一种自适应反演滑模控制策略。在满足最大功率跟踪控制要求的...针对带有未知参数和有界干扰的风电机组最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制问题,从风电机组的运动学和动力学模型出发,在最佳转矩控制方法的基础上提出一种自适应反演滑模控制策略。在满足最大功率跟踪控制要求的条件下,设计自适应控制律提高系统的鲁棒性,采用反演的方法来提高系统的全局渐进稳定性,使系统在参数摄动及外部扰动存在的情况下跟踪误差快速收敛。为进一步改善系统的控制性能,采用粒子群优化算法对正定矩阵Q的参数进行优化。将提出的控制策略与常规滑模控制和传统最佳转矩控制进行对比分析,证明了控制策略的可行性、有效性。展开更多
The flight dynamics model of air-breathing hypersonic vehicles (AHVs) is highly nonlinear and multivariable cou- pling, and includes inertial uncertainties and external disturbances that require strong, robust, and ...The flight dynamics model of air-breathing hypersonic vehicles (AHVs) is highly nonlinear and multivariable cou- pling, and includes inertial uncertainties and external disturbances that require strong, robust, and high-accuracy controllers. In this paper, we propose a linear-quadratic regulator (LQR) design method based on stochastic robustness analysis for the longitudinal dynamics of AHVs. First, input/output feedback linearization is used to design LQRs. Second, subject to various system parameter uncertainties, system robustness is characterized by the probability of stability and desired performance. Then, the mapping rela- tionship between system robustness and LQR parameters is established. Particularly, to maximize system robustness, a novel hybrid particle swarm optimization algorithm is proposed to search for the optimal LQR parameters. During the search iteration, a Chernoff bound algorithm is applied to determine the finite sample size of Monte Carlo evaluation with the given prohabilily levels. Finally, simulation results show that the optimization algorithm can effectively find the optimal solution to the LQR parameters.展开更多
文摘为在寻优过程中有效地保持算法的种群多样性,提出了一种改进的PSO(Particle Swarm Optimization)算法——PSOPC(Particle Swarm Optimizer based on Predator-prey Coevolution)。PSOPC算法将生态系统中捕食者和猎物的竞争协同进化机制嵌入到PSO算法中。基于PSOPC进行RFID(Radio Frequency IDentification)读写器网络调度模型的求解,根据读写器冲突关系的变化在线进行读写器的时隙分配求解与控制,在不影响读写器工作效率的同时,有效消除密集读写器环境下的读写器冲突问题,并优化整个读写器网络的工作效率。
文摘针对带有未知参数和有界干扰的风电机组最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制问题,从风电机组的运动学和动力学模型出发,在最佳转矩控制方法的基础上提出一种自适应反演滑模控制策略。在满足最大功率跟踪控制要求的条件下,设计自适应控制律提高系统的鲁棒性,采用反演的方法来提高系统的全局渐进稳定性,使系统在参数摄动及外部扰动存在的情况下跟踪误差快速收敛。为进一步改善系统的控制性能,采用粒子群优化算法对正定矩阵Q的参数进行优化。将提出的控制策略与常规滑模控制和传统最佳转矩控制进行对比分析,证明了控制策略的可行性、有效性。
基金the National Natural Science Foundation of China (No. 11672235)
文摘The flight dynamics model of air-breathing hypersonic vehicles (AHVs) is highly nonlinear and multivariable cou- pling, and includes inertial uncertainties and external disturbances that require strong, robust, and high-accuracy controllers. In this paper, we propose a linear-quadratic regulator (LQR) design method based on stochastic robustness analysis for the longitudinal dynamics of AHVs. First, input/output feedback linearization is used to design LQRs. Second, subject to various system parameter uncertainties, system robustness is characterized by the probability of stability and desired performance. Then, the mapping rela- tionship between system robustness and LQR parameters is established. Particularly, to maximize system robustness, a novel hybrid particle swarm optimization algorithm is proposed to search for the optimal LQR parameters. During the search iteration, a Chernoff bound algorithm is applied to determine the finite sample size of Monte Carlo evaluation with the given prohabilily levels. Finally, simulation results show that the optimization algorithm can effectively find the optimal solution to the LQR parameters.