期刊文献+
共找到117,192篇文章
< 1 2 250 >
每页显示 20 50 100
Quaternion-Based Adaptive Trajectory Tracking Control of a Rotor-Missile with Unknown Parameters Identification
1
作者 Jie Zhao Zhongjiao Shi +1 位作者 Yuchen Wang Wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期375-386,共12页
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta... This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations. 展开更多
关键词 Rotor-missile Adaptive control Parameter identification Quaternion control
下载PDF
Model Parameters Identification and Backstepping Control of Lower Limb Exoskeleton Based on Enhanced Whale Algorithm
2
作者 Yan Shi Jiange Kou +2 位作者 Zhenlei Chen Yixuan Wang Qing Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期100-114,共15页
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i... Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value. 展开更多
关键词 Parameter identification Enhanced whale optimization algorithm(EWOA) BACKSTEPPING Human-robot interaction Lower limb exoskeleton
下载PDF
Identification of the Asymmetric Transmission Error and Gear Mesh Dynamic Parameters using Full-Spectrum Responses in a Geared-Rotor System
3
作者 Bhyri Rajeswara Rao Rajiv Tiwari 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期112-142,共31页
A dominant source of vibration in geared-rotor systems is the gear mesh fault parameters.They include the asymmetric transmission error(TE),phases of TE,the gear mesh stiffness,the gear mesh damping,and the gear runou... A dominant source of vibration in geared-rotor systems is the gear mesh fault parameters.They include the asymmetric transmission error(TE),phases of TE,the gear mesh stiffness,the gear mesh damping,and the gear runouts.The present work deals with the experimental identification of the aforementioned parameters.A mathematical model of a geared-rotor system has been developed using Lagrangian dynamics.Equations of motion are transformed into the frequency domain using the full-spectrum response analysis.These transformed equations are used to develop an identification algorithm(IA)based on least-squares fit to estimate the TE and gear mesh dynamic parameters.The system IA is initially verified using numerical simulations.The robustness of the algorithm is checked by introducing white Gaussian noise in the simulated responses.A geared-rotor experimental rig was developed and used to measure responses at gear locations in two orthogonal directions.Measured responses are transformed in the frequency domain using the full-spectrum analysis and used in the present novel IA to identify the gear parameters.The identified parameters are validated by comparing the numerically generated full-spectrum response using experimentally estimated parameters and that from the experimental rig. 展开更多
关键词 Full-spectrum Geared-rotor system identification Multiple faults Runouts Transmission error
下载PDF
Advancing healthcare through laboratory on a chip technology:Transforming microorganism identification and diagnostics
4
作者 Carlos M Ardila 《World Journal of Clinical Cases》 SCIE 2025年第3期9-19,共11页
In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has... In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide. 展开更多
关键词 Laboratory-on-a-chip Microorganism identification DIAGNOSTICS Point-ofcare testing Biosensors
下载PDF
Flight Flutter Modal Parameters Identification with Atmospheric Turbulence Excitation Based on Wavelet Transformation 被引量:4
5
作者 张波 史忠科 李健君 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期394-401,共8页
In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters... In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity. 展开更多
关键词 flight flutter modal parameters identification atmospheric turbulence excitation wavelet transformation random decrement technique acceleration response
下载PDF
Identification of constitutive model parameters for nickel aluminum bronze in machining 被引量:2
6
作者 付中涛 杨文玉 +2 位作者 曾思琪 郭步鹏 胡树兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期1105-1111,共7页
The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to est... The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation. 展开更多
关键词 nickel aluminum bronze constitutive parameter Johnson-Cook model identification method
下载PDF
Identification of material parameters from punch stretch test 被引量:1
7
作者 李小强 何德华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1435-1441,共7页
To accurately describe the mechanical properties of aluminium alloy sheet during deformation, an inverse identification was presented to deal with material parameters from the popular punch stretch test. In the identi... To accurately describe the mechanical properties of aluminium alloy sheet during deformation, an inverse identification was presented to deal with material parameters from the popular punch stretch test. In the identification procedure, the optimization strategy combines finite element method (FEM), Latin hypercube sampling (LHS), Kriging model and multi-island genetic algorithm (MIGA). The proposed approach is used on material parameter identification of aluminium alloy sheet 2D12. The anisotropic yield criterion Hill’90 is discussed. The results show that the Hill’90 anisotropic yield criterion with identified anisotropic material parameters has a good potential in describing the anisotropic behaviours. It provides a way to obtain the material parameters for FE simulations of sheet metal forming. 展开更多
关键词 parameter identification punch stretch test aluminium alloy sheet Hill’90 Kriging model
下载PDF
IDENTIFICATION OF PARAMETERS IN SEMILINEAR PARABOLIC EQUATIONS 被引量:9
8
作者 刘振海 《Acta Mathematica Scientia》 SCIE CSCD 1999年第2期175-180,共6页
An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary conditio... An optimization theoretic approach of coefficients in semilinear parabolic equation is presented. It is based on convex analysis techniques. General theorems on existence are proved in L1 setting. A necessary condition is given for the solutions of the parameter estimatioll problem. 展开更多
关键词 identification COEFFICIENTS semilinear parabolic equations.
下载PDF
IDENTIFICATION OF TIME-VARYING MODAL PARAMETERS USING LINEAR TIME-FREQUENCY REPRESENTATION 被引量:3
9
作者 XuXiuzhong ZhangZhiyi +1 位作者 HuaHongxing ChenZhaoneng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期445-448,共4页
A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Usin... A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems. 展开更多
关键词 Linear time-varying system Modal parameter identification Hilberttransform Gabor expansion
下载PDF
Identification of the Mechanical Joint Parameters with Model Uncertainty 被引量:3
10
作者 郭勤涛 张令弥 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期47-52,共6页
Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, ... Joint parameter identification is a key problem in the modeling of complex structures. The behavior of joint may be random due to the random properties of preload and joint geometries, contact surface and its finish, etc. A method is presented to simulate the joint parameters as probabilistic variables. In this method the response surface based model updating method and probabilistic approaches are employed to identify the parameters. The study implies that joint parameters of some structures have normal or nearly normal distributions, and a linear FE model with probabilistic variables could illustrate dynamic characteristics of joints. 展开更多
关键词 joint parameter identification model updating model uncertainty response surface
下载PDF
Simultaneous identification of unknown time delays and model parameters in uncertain dynamical systems with linear or nonlinear parameterization by autosynchronization 被引量:1
11
作者 顾卫东 孙志勇 +1 位作者 吴晓明 于长斌 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期190-196,共7页
In this paper, we propose a general method to simultaneously identify both unknown time delays and unknown model parameters in delayed dynamical systems based on the autosynchronization technique. The design procedure... In this paper, we propose a general method to simultaneously identify both unknown time delays and unknown model parameters in delayed dynamical systems based on the autosynchronization technique. The design procedure is presented in detail by constructing a specific Lyapunov function and linearizing the model function with nonlinear parameterization. The obtained result can be directly extended to the identification problem of linearly parameterized dynamical systems. Two Wpical numerical examples confirming the effectiveness of the identification method are given. 展开更多
关键词 autosynchronization parameter identification delay identification nonlinear parameterization
下载PDF
Numerical-experimental method for elastic parameters identification of a composite panel 被引量:3
12
作者 Dong Jiang Rui Ma +1 位作者 Shaoqing Wu Qingguo Fei 《Theoretical & Applied Mechanics Letters》 CAS 2014年第6期20-25,共6页
A hybrid numerical-experimental approach to identify elastic modulus of a textile composite panel using vibration test data is proposed and investi- gated. Homogenization method is adopted to predict the initial value... A hybrid numerical-experimental approach to identify elastic modulus of a textile composite panel using vibration test data is proposed and investi- gated. Homogenization method is adopted to predict the initial values of elastic parameters of the composite, and parameter identification is transformed to an optimization problem in which the objective function is the minimization of the discrepancies between the experimental and numerical modal data. Case study is conducted employing a woven fabric reinforced composite panel. Three parameters (Ell, E22, G12) with higher sensitivities are selected to be identified. It is shown that the elastic parameters can be accurately identified from experimental modal data. 展开更多
关键词 composite panel elastic modulus parameter identification modal data numerical-experimental method
下载PDF
Identification Schemes for Unmanned Excavator Arm Parameters 被引量:3
13
作者 Yahya H.Zweiri 《International Journal of Automation and computing》 EI 2008年第2期185-192,共8页
Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust paramet... Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust parameter identification scheme for field applications. This paper presents the results of a research study on parameter identification for UE. Three identification methods, the Newton-Raphson method, the generalized Newton method, and the least squares method are used and compared for prediction accuracy, robustness to noise and computational speed. The techniques are used to identify the link parameters (mass, inertia, and length) and friction coefficients of the full-scale UE. Using experimental data from a full-scale field UE, the values of link parameters and the friction coefficient are identified. Some of the identified parameters are compared with measured physical values. Furthermore, the joint torques and positions computed by the proposed model using the identified parameters are validated against measured data. The comparison shows that both the Newton-Raphson method and the generalized Newton method are better in terms of prediction accuracy. The Newton-Raphson method is computationally efficient and has potential for real time application, but the generalized Newton method is slightly more robust to measurement noise. The experimental data were obtained in collaboration with QinetiQ Ltd. 展开更多
关键词 parameters identification complex dynamic systems Newton-Raphson method generalized Newton method least squares method full-scale validation
下载PDF
Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine 被引量:11
14
作者 左红艳 罗周全 +1 位作者 管佳林 王益伟 《Journal of Central South University》 SCIE EI CAS 2014年第3期1085-1090,共6页
A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibratio... A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high. 展开更多
关键词 rock and soil fuzzy theory vibration excavation least squares-support vector machine identification
下载PDF
Application of orthogonal experimental design and Tikhonov regularization method for the identification of parameters in the casting solidification process 被引量:4
15
作者 Dashan SUI Zhenshan CUI 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第1期13-21,共9页
The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized funct... The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions. 展开更多
关键词 Orthogonal experimental design Regularization method parameters identification Numerical simulation
下载PDF
Identification of Parameters in 2D-FEM of Valve Piping System within NPP Utilizing Seismic Response 被引量:3
16
作者 Ruiyuan Xue Shurong Yu Xiheng Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第10期789-805,共17页
Nuclear power plants(NPP)contain plenty of valve piping systems(VPS’s)which are categorized into high anti-seismic grades.Tasks such as seismic qualification,health monitoring and damage diagnosis of VPS’s in its de... Nuclear power plants(NPP)contain plenty of valve piping systems(VPS’s)which are categorized into high anti-seismic grades.Tasks such as seismic qualification,health monitoring and damage diagnosis of VPS’s in its design and operation processes all depend on finite element method.However,in engineering practice,there is always deviations between the theoretical and the measured responses due to the inaccurate value of the structural parameters in the model.The structure parameters identification of VPS within NPP is still an unexplored domain to a large extent.In this paper,the initial 2D-finite element model(FEM)for VPS with a DN80 gate valve was updated by utilizing seismic response.The objective function used in the model updating procedure is the vibration control equation error of the VPS.The experimental results show that the updated 2D-FEM can accurately predict the original dynamic characteristic of the VPS.It was also found the Rayleigh damping coefficients corresponding to the VPS vary slightly with the change in seismic excitation amplitude.The research displayed the complete procedure of updating the complex structured initial FEM by utilizing seismic response,and the results show that the parameters can be accurately identified even if the seismic response used for updating merely contained the fundamental frequency information of the structure. 展开更多
关键词 Seismic response nuclear power plant VALVE FEM updating parameter identification
下载PDF
Identification of dynamic model parameters for lithium-ion batteries used in hybrid electric vehicles 被引量:4
17
作者 张彩萍 Zhang Chengning +1 位作者 Liu Jiazhong Sharkh S M 《High Technology Letters》 EI CAS 2010年第1期6-12,共7页
An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization p... An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization process. The parameters of the model are identified using combined experimental and extended Kalman filter (EKF) recursive methods. The open-circuit voltage and ohmic resistance of the battery are directly measured and calculated from experimental measurements, respectively. The rest of the coupled dynamic parameters, i.e. the RC network parameters, are estimated using the EKF method. Experimental and simulation results are presented to demonstrate the efficacy of the proposed circuit model and parameter identification techniques for simulating battery dynamics. 展开更多
关键词 parameter identification dynamic battery model lithium-ion battery hybrid electric vehicles (HEV)
下载PDF
Identification of Modal Parameters with Linear Structure under Non-stationary Ambient Excitation 被引量:2
18
作者 续秀忠 华宏星 +1 位作者 李中付 陈兆能 《Journal of Donghua University(English Edition)》 EI CAS 2004年第1期146-151,共6页
Empirical mode decomposition (EMD) is proposed to identify linear structure under non-stationary excitation,and non-white noise coefficient is introduced under the assumption of random signals consisting of white nois... Empirical mode decomposition (EMD) is proposed to identify linear structure under non-stationary excitation,and non-white noise coefficient is introduced under the assumption of random signals consisting of white noise and non-white noise signals. The cross-correlation function of response signal is decomposed into mode functions and residue by EMD method. The identification technique of the modal parameters of single freedom degree is applied to each mode function to obtain natural frequencies, damping ratios and mode shapes. The results of identification of the five-degree freedom linear system demonstrate that the proposed method is effective in identifying the parameters of linear structures under non-stationary ambient excitation. 展开更多
关键词 Nonstationary excitation empirical mode decomposition (EMD) non-white noise coefficient modal parameter identification linear structure
下载PDF
Parameters Identification of Tunnel Jointed Surrounding Rock Based on Gaussian Process Regression Optimized by Difference Evolution Algorithm 被引量:1
19
作者 Annan Jiang Xinping Guo +1 位作者 Shuai Zheng Mengfei Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1177-1199,共23页
Due to the geological body uncertainty,the identification of the surrounding rock parameters in the tunnel construction process is of great significance to the calculation of tunnel stability.The ubiquitous-joint mode... Due to the geological body uncertainty,the identification of the surrounding rock parameters in the tunnel construction process is of great significance to the calculation of tunnel stability.The ubiquitous-joint model and three-dimensional numerical simulation have advantages in the parameter identification of surrounding rock with weak planes,but conventional methods have certain problems,such as a large number of parameters and large time consumption.To solve the problems,this study combines the orthogonal design,Gaussian process(GP)regression,and difference evolution(DE)optimization,and it constructs the parameters identification method of the jointed surrounding rock.The calculation process of parameters identification of a tunnel jointed surrounding rock based on the GP optimized by the DE includes the following steps.First,a three-dimensional numerical simulation based on the ubiquitous-joint model is conducted according to the orthogonal and uniform design parameters combing schemes,where the model input consists of jointed rock parameters and model output is the information on the surrounding rock displacement and stress.Then,the GP regress model optimized by DE is trained by the data samples.Finally,the GP model is integrated into the DE algorithm,and the absolute differences in the displacement and stress between calculated and monitored values are used as the objective function,while the parameters of the jointed surrounding rock are used as variables and identified.The proposed method is verified by the experiments with a joint rock surface in the Dadongshan tunnel,which is located in Dalian,China.The obtained calculation and analysis results are as follows:CR=0.9,F=0.6,NP=100,and the difference strategy DE/Best/1 is recommended.The results of the back analysis are compared with the field monitored values,and the relative error is 4.58%,which is satisfactory.The algorithm influencing factors are also discussed,and it is found that the local correlation coefficientσf and noise standard deviationσn affected the prediction accuracy of the GP model.The results show that the proposed method is feasible and can achieve high identification precision.The study provides an effective reference for parameter identification of jointed surrounding rock in a tunnel. 展开更多
关键词 Gauss process regression differential evolution algorithm ubiquitous-joint model parameter identification orthogonal design
下载PDF
Synchronization and Parameters Identification of Chaotic Systems via Adaptive Control 被引量:2
20
作者 王中生 廖晓昕 《Journal of Electronic Science and Technology of China》 2005年第1期64-67,共4页
Based on Lyapunov stability theory, a novel adaptive controller is designed for a class of chaotic systems .The parameters identification and synchronization of chaotic systems can be carried out simultaneously. The c... Based on Lyapunov stability theory, a novel adaptive controller is designed for a class of chaotic systems .The parameters identification and synchronization of chaotic systems can be carried out simultaneously. The controller and the updating law of parameters identification are directly constructed by analytic formula. Simulation results with Chen’s system and R?ssler system show the effectiveness of the proposed controller. 展开更多
关键词 CHAOS parameters identification SYNCHRONIZATION adaptive control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部