期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Particle Concentration in a Gas Cyclone Separator 被引量:8
1
作者 Xue Xiaohu Sun Guogang Wan Gujun Shi Mingxian 《Petroleum Science》 SCIE CAS CSCD 2007年第3期76-83,共8页
The particle concentration inside a cyclone separator at different operation parameters was simulated with the FLUENT software. The Advanced Reynolds Stress Model (ARSM) was used in gas phase turbulence modeling. St... The particle concentration inside a cyclone separator at different operation parameters was simulated with the FLUENT software. The Advanced Reynolds Stress Model (ARSM) was used in gas phase turbulence modeling. Stochastic Particle Tracking Model (SPTM) and the Particle-Source-In-Cell (PSIC) method were adopted for particles computing. The interaction between particles and the gas phase was also taken into account. The numerical simulation results were in agreement with the experimental data. The simulation revealed that an unsteady spiral dust strand appeared near the cyclone wall and a non-axi-symmetrical dust ring appeared in the annular space and under the cover plate of the cyclone. There were two regions in the radial particle concentration distribution, in which particle concentration was low in the inner region (r/R≤0.75) and increased greatly in the outer region (r/R〉0.75). Large particles generally had higher concentration in the near-wall region and small particles had higher concentration in the inner swirling flow region. The axial distribution of particle concentration in the inner swirling flow (r/R≤0.3) region showed that there existed serious fine particle entrainment within the height of 0.SD above the dust discharge port and a short-cut flow at a distance of about 0.25D below the entrance of the vortex finder. The dimensionless concentration in the high-concentration region increased obviously in the upper part of the cyclone separation space when inlet particle loading was large. With increasing gas temperature, the particle separation ability of the cyclone was obviously weakened. 展开更多
关键词 Cyclone separator particle concentration distribution SIMULATION
下载PDF
The influence of nano-particle tracers on the slip length measurements by microPTV 被引量:5
2
作者 Xu Zheng Gao-Pan Kong +1 位作者 Zhan-Hua Silber-Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第3期411-419,共9页
Direct measurement of slip length is based on the measured fluid velocity near solid boundary. However, previous micro particle image velocimetry/particle tracking velocimetry (microPIV/PTV) measurements have report... Direct measurement of slip length is based on the measured fluid velocity near solid boundary. However, previous micro particle image velocimetry/particle tracking velocimetry (microPIV/PTV) measurements have reported surprisingly large measured near-wall velocities of pressure-driven flow in apparent contradiction with the no-slip hy-pothesis and experimental results from other techniques. To better interpret the measured results of the microPIV/PTV, we performed velocity profile measurements near a hy-drophilic wall (z = 0.25-1.5 μm) with two sizes of tracer particles (φ 50 nm and φ200 nm). The experimental results indicate that, at less than 1 μm from the wall, the deviations between the measured velocities and no-slip theoretical values obviously decrease from 93% of φ200 nm particles to 48% of φ50 nm particles. The Boltzmann-like exponential measured particle concentrations near wall were found. Based on the non linear Boltzmann distribution of particle concentration and the effective focus plane thickness, we illustrated the reason of the apparent velocity increase near wall and proposed a method to correct the measured velocity profile. By this method, the deviations between the corrected measured velocities and the no-slip theoretical velocity decrease from 45.8% to 10%, and the measured slip length on hy-drophilic glass is revised from 75 nm to 16 nm. These results indicated that the particle size and the biased particle concentration distribution can significantly affect near wall velocity measurement via microPIV/PTV, and result in larger measured velocity and slip length close to wall. 展开更多
关键词 MicroPIV/PTV · Slip length · Nano-particle tracer · particle concentration distribution · Boltzmann distribution
下载PDF
Micro-particle in surface snow at Princess Elizabeth Land, East Antarctica
3
作者 汪大立 康建成 +4 位作者 孙波 温家洪 刘雷保 李忠勤 李军 《Chinese Journal of Polar Science》 2000年第1期43-52,共10页
During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow... During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow samples at an interval of 4 km . Micro particle analysis of the samples indicates that the micro particle concentration apparently decreases with the increasing of altitude, and the amplitudes of micro particle concentration is much larger in the lower altitude than in the higher altitude. Further analysis of grain size distributions of micro particle, percentage of micro particles from different sources and variations with altitude suggest that micro particles in this area are from a considerably dominant source. Although this area is controlled by polar easterly wind and katabatic wind, transportation and deposition of the micro particles are mainly influenced by marine transportation in coastal area. 展开更多
关键词 surface snow concentration and distribution of micro particle Antarctic ice sheet.
下载PDF
Effect of traffic restriction on atmospheric particle concentrations and their size distributions in urban Lanzhou, Northwestern China 被引量:2
4
作者 Suping Zhao Ye Yu +2 位作者 Na Liu Jianjun He Jinbei Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期362-370,共9页
During the 2012 Lanzhou International Marathon, the local government made a significant effort to improve traffic conditions and air quality by implementing traffic restriction measures. To evaluate the direct effect ... During the 2012 Lanzhou International Marathon, the local government made a significant effort to improve traffic conditions and air quality by implementing traffic restriction measures. To evaluate the direct effect of these measures on urban air quality, especially particle concentrations and their size distributions, atmospheric particle size distributions (0.5-20μm) obtained using an aerodynamic particle sizer (model 3321, TSI, USA) in June 2012 were analyzed. It was found that the particle number, surface area and volume concentrations for size range 0.5-10 μm were (15.0±2.1) cm-3, (11.8±2.6) μm2/cm3 and (1.9±0.6) μm2/cm3, respectively, on the traffic-restricted day (Sunday), which is 63.2%, 53.0% and 47.2% lower than those on a normal Sunday. For number and surface area concentrations, the most affected size range was 0.5-0.7 and 0.5-0.8 μm, respectively, while for volume concentration, the most affected size ranges were 0.5-0.8, 1.7-2.0 and 5.0-5.4 μm. Number and volume concentrations of particles in size range 0.5-1.0μm correlated well with the number of non-CNG (Compressed Natural Gas) powered vehicles, while their correlation with the number of CNG-powered vehicles was very low, suggesting that reasonable urban traffic controls along with vehicle technology improvements could play an important role in improving urban air quality. 展开更多
关键词 traffic restriction particle concentration size distribution urban air quality
原文传递
Modeling the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer 被引量:10
5
作者 Han Fangwei Wang Deming +1 位作者 Jiang Jiaxing Zhu Xiaolong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期129-135,共7页
In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the cond... In order to reveal the influence of forced ventilation on the dispersion of droplets ejected from roadheader-mounted external sprayer,the paper studies the air-flowing field and the droplet distribution under the condition of gentle breeze and normal forced ventilation in heading face using the particle tracking technology of computational fluid dynamics(CFD).The results show that air-flowing tendency in the same section presents great comparability in the period of gentle breeze and forced ventilation,and the difference mainly embodies in the different wind velocity.The influence of ventilation on the dispersion of droplets is faint under the gentle breeze condition.The droplet can be evenly distributed around the cutting head.However,under the normal forced ventilation,a large number of droplets will drift to the return air side.At the same time,droplet clusters are predominantly presented in the lower part of windward side and the middle of the leeward side around the cutting head.In contrast,the droplet concentration in other parts around cutting head decreases a lot and the droplets are unable to form close-grained mist curtain.So the dust escape channel is formed.In addition,the simulation results also reveal that the disturbance of air flow on the droplet distribution can be effectively relieved when using ventilation duct with Coanda effect(VDCE).Field experiment results show that the dust suppression efficiency of total dust and respirable dust increases respectively by 10.5%and 9.3%when using VDCE,which proves that it can weaken the influence of airflow on droplet dispersion. 展开更多
关键词 Forced ventilation Dust suppression by water spraying Discrete phase model particle tracing concentration distribution Ventilatiork duct with Coanda effect
下载PDF
Determination of time-and size-dependent fine particle emission with varied oil heating in an experimental kitchen 被引量:4
6
作者 Shuangde Li Jiajia Gao +5 位作者 Yiqing He Liuxu Cao Ang Li Shengpeng Mo Yunfa Chen Yaqun Cao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第1期157-164,共8页
Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characterist... Particulate matter(PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health.It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics,especially ultrafine particles(UFP &lt; 100 nm) and accumulation mode particles(AMP 100-555 nm).Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 255℃ to investigate PM emission and decay features between 0.03 and 10 μm size dimension by electrical low pressure impactor(ELPI) without ventilation.Rapeseed and sunflower produced high PM_(2.5) around5.1 mg/m^3,in comparison with those of soybean and corn(5.87 and 4.55 mg/m^3,respectively)at peak emission time between 340 and 450 sec since heating oil,but with the same level of particle numbers 6-9 × 10~5/cm^3.Mean values of PM_(1.0)/PM_(2.5) and PM_(2.5)/PM_(10) at peak emission time are around 0.51-0.55 and 0.23-0.29.After 15 min naturally deposition,decay rates of PM_(1.0),PM_(2.5) and PM_(10) are 13.3%-29.8%,20.1%-33.9%and 41.2%-54.7%,which manifest that PM_(1.0) is quite hard to decay than larger particles,PM_(2.5) and PM_(1.0).The majority of the particle emission locates at 43 nm with the largest decay rate at 75%,and shifts to a larger size between137 and 555 nm after 15 min decay.The decay rates of the particles are sensitive to the oil type. 展开更多
关键词 Cooking fume Ultrafine particle Number concentration Size distribution Emission character
原文传递
Six-day measurement of size-resolved indoor fluorescent bioaerosols of outdoor origin in an office 被引量:4
7
作者 Yangyang Xie Oscar A. Fajardo +2 位作者 Weizhuo Yan Bin Zhao Jingkun Jiang 《Particuology》 SCIE EI CAS CSCD 2017年第2期161-169,共9页
Indoor airborne bioaerosols of outdoor origin play an important role in determining the exposure of humans to bioaerosols because people spend most of their time indoors. However, there are few studies focusing on ind... Indoor airborne bioaerosols of outdoor origin play an important role in determining the exposure of humans to bioaerosols because people spend most of their time indoors. However, there are few studies focusing on indoor bioaerosols originating from outdoors. In this study, indoor versus outdoor size-resolved concentrations and particle asymmetry factors of airborne fluorescent bioaerosols in an office room were measured continuously for 6 days (144 h) using a fluorescent bioaerosol detector. The windows and door of this room were closed to ensure that there was only air infiltration; moreover, any human activities were ceased during sampling to inhibit effects of indoor sources. We focused on fine particles, since few coarse particles enter indoor environments, when windows and doors are closed. Both indoor and outdoor fluorescent bioaerosol size distributions were fit with two-mode lognormal distributions (indoor R2 = 0.935, outdoor R2 = 0.938). Asymmetry factor distributions were also fit with lognormal distributions (indoor R2 = 0.992, outdoor R2 = 0.992). Correlations between indoor and outdoor fluorescent bioaerosol concentrations show significant concentration-attenuation and a time lag during the study period. A two-parameter, semi-empirical model was used to predict concentrations of indoor fluorescent bioaerosols of outdoor origin. The measured and predicted concentrations had a linear relationship for the studied size fractions, with an R2 for all size fractions of larger than 0.83. 展开更多
关键词 Fluorescent bioaerosols Indoor air Outdoor air Waveband integrated bioaerosol sensor(WIBS)particle size distributions concentrations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部