It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b...It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.展开更多
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between...Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.展开更多
Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sedime...Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.展开更多
Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a...Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.展开更多
Acquiring the size gradation for particle aggregates is a common practice in the granule related industry,and mechanical sieving or screening has been the normal method. Among many drawbacks of this conventional means...Acquiring the size gradation for particle aggregates is a common practice in the granule related industry,and mechanical sieving or screening has been the normal method. Among many drawbacks of this conventional means,the major ones are time-consuming,labor-intensive,and being unable to provide real-time feedback for process control. In this letter,an optical sieving approach is introduced. The two-dimensional images are used to develop methods for inferring particle volume and sieving behavior for gradation purposes. And a combination of deterministic and probabilistic methods is described to predict the sieving behaviors of the particles and to construct the gradation curves for the aggregate sample. Comparison of the optical sieving with standard mechanical sieving shows good correlation.展开更多
Vortexing limestone injection into furnace combined with calcium lime hydration in the downstream is the most promising technology for controlling SO 2 emission. Particle imaging velocimetry (PIV) is used to measure ...Vortexing limestone injection into furnace combined with calcium lime hydration in the downstream is the most promising technology for controlling SO 2 emission. Particle imaging velocimetry (PIV) is used to measure the gas liquid solid three phase flow field in a reactor. By image processing based on newly developed software, the number concentrations of sorbent particles and water droplets are presented. The measuring results are very helpful for better understanding the desulfurization mechanism and optimizing configurational and operational parameters in the hydration reactor.展开更多
Dielectric barrier discharge(DBD)plasma actuators are widely used in active flow control due to their simple design and rapid responsiveness.However,they need more effectiveness and discharge extension.To overcome the...Dielectric barrier discharge(DBD)plasma actuators are widely used in active flow control due to their simple design and rapid responsiveness.However,they need more effectiveness and discharge extension.To overcome these limitations,a sector-shaped dielectric barrier discharge(SS-DBD)plasma actuator with an adjustable jet angle was developed to enhance flow control effectiveness.The flow field dynamics induced by the SS-DBD plasma actuator were quantitatively analyzed using particle image velocimetry(PIV).Experimental investigations showed that precise adjustments to the actuation voltage can modulate the maximum velocity of the induced jet.Furthermore,a quasi-linear relationship between the sector-shaped angles of the SS-DBD and the deflected jet angles was established,indicating that changes in the sector-shaped angles directly influence the direction of the deflected jet.This correlation enables precise control over jet angles,significantly enhancing flow control by adjusting the SS-DBD-PA's sector-shaped angle.展开更多
Aim To investigate the spray particle velocity and its distribution characteristics. Methods\ A set of PIV (particle image velocimetry) system was developed and used to observe and analyze the spray particle velocity...Aim To investigate the spray particle velocity and its distribution characteristics. Methods\ A set of PIV (particle image velocimetry) system was developed and used to observe and analyze the spray particle velocity field. Results and Conclusion\ Double exposure image of the spray particle within the region of 10-50 mm from the nozzle tip was recorded and analyzed by the IBAS2000 analysis system. Some characteristics of the spray particle velocity and its distribution were obtained.展开更多
Magnetic-liquid double suspension bearing(MLDSB)is a new type of suspension bearing based on electromagnetic suspension and supplemented by hydrostatic supporting.Without affecting the electromagnetic suspension force...Magnetic-liquid double suspension bearing(MLDSB)is a new type of suspension bearing based on electromagnetic suspension and supplemented by hydrostatic supporting.Without affecting the electromagnetic suspension force,the hydrostatic supporting effect is increased,and the real-time coupling of magnetic and liquid supporting can be realized.However,due to the high rotation speed,the rotor part produces eddy current loss,resulting in a large temperature rise and large ther-mal deformation,which makes the oil film thickness deviate from the initial design.The support and bearing characteristics are seriously affected.Therefore,this paper intends to explore the internal effects of eddy current loss of the rotor on the temperature rise and thermal deformation of MLDSB.Firstly,the 2D magnetic flow coupling mathematical model of MLDSB is established,and the eddy current loss distribution characteristics of the rotor are numerically simulated by Maxwell software.Secondly,the internal influence of mapping relationship of structural operating parameters such as input current,coil turns and rotor speed on rotor eddy current loss is revealed,and the changing trend of rotor eddy current loss under different design parameters is explored.Thirdly,the eddy cur-rent loss is loaded into the heat transfer finite element calculation model as a heat source,and the temperature rise of the rotor and its thermal deformation are simulated and analyzed,and the influ-ence of eddy current loss on rotor temperature rise and thermal deformation is revealed.Finally,the pressure-flow curve and the distribution law of the internal flow field are tested by the particle image velocimetry(PIV)system.The results show that eddy current loss increases linearly with the in-crease of coil current,coil turns and rotor speed.The effect of rotational speed on eddy current loss is much higher than that of coil current and coil turns.The maximum temperature rise,minimum temperature rise and maximum thermal deformation of the rotor increase with the increase of eddy current loss.The test results of flow-pressure and internal trace curves are basically consistent with the theoretical simulation,which effectively verifies the correctness of the theoretical simulation.The research results can provide theoretical basis for the design and safe and stable operation of magnetic fluid double suspension bearings.展开更多
Given image sequences of closely packed particles, the underlying aim is to estimate diameters without explicit segmentation. In a way, this is similar to the task of counting objects without directly counting them. S...Given image sequences of closely packed particles, the underlying aim is to estimate diameters without explicit segmentation. In a way, this is similar to the task of counting objects without directly counting them. Such calculations may, for example, be useful)Cast estimation of particle size in different application areas. The topic is that of estimating average size (=average diameter) of packed particles, from formulas involving edge density, and the edges from moment-based thresholding are used. An average shape factor is involved in the calculations, obtained for some frames from crude partial segmentation. Measurement results from about 80frames have been analyzed.展开更多
This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation an...This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.展开更多
The flow fields in a dual Rushton impeller stirred tank with diameter of 0.48 m (T) were measured by using Particle Image Velocimetry (PIV). Three different size impellers were used in the experiments with diamete...The flow fields in a dual Rushton impeller stirred tank with diameter of 0.48 m (T) were measured by using Particle Image Velocimetry (PIV). Three different size impellers were used in the experiments with diameters of D = 0.33T, 0.40T and 0.50T, respectively. The multi-block and 360° ensemble-averaged approaches were used to measure the radial and axial angle-resolved velocity distributions. Three typical flow patterns, named, merging flow, parallel flow and diverging flow, were obtained by changing the clearance of the bottom impeller above the tank base (C1) and the spacing between the two impellers (C2). The results show that while C1 is equal to D, the parallel flow occurs as C2≥0.40T, C2≥0.38T and C2≥0.32T and the merging flow occurs as C2≤0.38T, C2≤0.36T and C2≤0.27T for the impellers with diameter of D=0.33T, 0.40T and 0.50T, respectively. When C2 is equal to D, the diverging flow occurs in the value of C1≤0.15T for all three impellers. The flow numbers of these impellers were calculated for the parallel flow. Trailing vortices generated by the lower impeller for the diverging flow were shown by the 10° angle-resolved velocity measurements. The peak value of turbulence kinetic energy ( k/V^2tip = 0.12-0.15 or above) appears along the center of the impeller discharging stream.展开更多
Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impeller...Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impellers of 0.19 m diameter ( D = 0.4T ). The developed flow patterns depend on the clearance of the lower impeller above the base of the vessel, the spacing between the two impellers, and the submergence of the upper impeller below the liq- uid surface. Their combinations can generate three basic flow patterns, named, parallel, merging and diverging flows. The results of velocity measurement show that the flow characteristics in the impeller jet flow region changes very little for different positions. Average velocity, trailing vortices and shear strain rate distributions for three flow patterns were measured by using PIV technique. The characteristics of trailing vortex and its trajectory were described in detail for those three flow patterns. Since the space-resolution of PIV can only reach the sub-grid rather than the Kolmogorov scale, a large-eddy PIV analysis has been used to estimate the distribution of the turbulent kinetic energy dissipation. Comparison of the distributions of turbulent kinetic energy and dissipation rate in merging flow shows that the highest turbulent kinetic energy and dissipation are both located in the vortex regions, but the maxima are at somewhat different lo- cations behind the blade. About 37% of the total energy is dissipated in dual impeller jet flow regions. The obtained distribution of shear strain rate for merging flow is similar to that of turbulence dissipation, with the shear strain rate around the trailing vortices much higher than in other areas.展开更多
A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement t...A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement to 3D based on a binocular vision model,where two cameras with a well geometrical setting were utilized to image the same object simultaneously.This system utilized two open software packages and some simple programs in MATLAB,which can easily be adjusted to meet user needs at a low cost.The failure planes form an angle with the horizontal line,which are measured at 27°-29°,approximately three-fourths of the frictional angle of soil.The edge of the strain wedge formed in front of the pile is an arc,which is slightly different from the straight line reported in the literature.The active and passive influence zones are about twice and six times of the diameter of the pile,respectively.The test demonstrates the good performance and feasibility of this stereo-PIV system for more advanced geotechnical testing.展开更多
In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns w...In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns were studied. One was that the impeller runs at constant speed, the other was that the impellerruns at time-dependent speed and in a periodic way. The emphasis of the paper was on the comparison of meanand RMS velocity vector maps and profiles between these two types of motion patterns, and especial attention waspaid to the comparison of the mean velocity, time-averaged RMS velocity, phase averaged RMS velocity betweenthe constant 3 RPS (revolution per second) and time-dependent operation. The Reynolds number was between 763and 1527. The study explained the mechanism that time-dependent RPS is more efficient for mixing than that ofconstant RPS.展开更多
The failure of a drilling pump is always due to the break of the drilling pump valve, which is one of the most important but also the weakest parts of the drilling pump. Over the decades, the degradation of drilling p...The failure of a drilling pump is always due to the break of the drilling pump valve, which is one of the most important but also the weakest parts of the drilling pump. Over the decades, the degradation of drilling pump valves has been investigated extensively and various failure mechanisms have been proposed. However, no experimental test on the fluid has been successfully performed to support some of these mechanisms. In this paper, tests of the flow within the valve play are carried out to investigate the factors resulting in the failure of the valve. In the tests, particle image velocimetry(PIV) technology is employed to measure the flow field distribution of the valve play in the model. From these tests, the distributions of velocity and vorticity of fluid in 'various valves with different valve angles and different valve lifts are obtained, from which the features of flow fields are derived and generalized. Subsequently, a general rule of the influence of valve angles and valve lifts on the flow velocity is concluded according to chart analyses of maximal velocities and mean velocities. Finally, an analysis is made on the possibility of valve failure caused by erosion and abrasion in a working valve, with the application of the failure mechanisms of drilling pump valves. PIV measurement improves the study on the failure of the drilling pump valve, and the results show good agreement with previous computational fluid dynamics(CFD) simulations.展开更多
The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry...The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.展开更多
Large-view flow field measurements using the particle image velocimetry (PIV) technique with high resolution CCD cameras on a rotating 1/8 scale blade model of the NREL UAE phase VI wind turbine are conducted in the...Large-view flow field measurements using the particle image velocimetry (PIV) technique with high resolution CCD cameras on a rotating 1/8 scale blade model of the NREL UAE phase VI wind turbine are conducted in the engineering-oriented q53.2 m wind tunnel. The motivation is to establish the database of the initiation and development of the tip vortex to study the flow structure and mechanism of the wind turbine. The results show that the tip vortex first moves inward for a very short period and then moves outward with the wake expansion, while its vorticity decreases with time after being trailed from the trailing edge of the blade tip, and then increases continuously with the rapid rolling-up to form a strong tip vortex. The measurements also indicate that the downstream movement of the tip vortex is nearly linear in the very near wake under the test condition.展开更多
A special transparent centrifugal pump is designed. Detailed opticalmeasurements of the flow inside the rotating passages of a five-bladed shroud centrifugal pumpimpeller have been performed by using two-dimensional p...A special transparent centrifugal pump is designed. Detailed opticalmeasurements of the flow inside the rotating passages of a five-bladed shroud centrifugal pumpimpeller have been performed by using two-dimensional particle image velocimetry (PIV). The flow issurveyed at three load conditions q_V/q_(Vd) = 0.4, q_V/q_(Vd) = 1.0, q_V/q_(Vd) = 1.5,respectively. As a result, phase averaged PIV velocity vector maps on three planes between hub andshroud of the impeller are presented. At design load, the mean field of relative velocity ispredominantly vane congruent, showing well-behaved flow without separation. The distributions of therelative velocity on different plane along the pump shaft are very different and there is always alow velocity zone near the pressure-side of the blade at both low and design flow rate, but thelow-velocity-zone at the low flow rate is much larger than that at the design one. The studydemonstrates that the PIV technique is efficient in providing reliable and detailed velocity dataover a full impeller passage.展开更多
The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at ...The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps.展开更多
基金supported by the Key Research and Development Plan of Shandong Province(the Major Scientific and Technological Innovation Projects,2021ZDSYS13)the Natural Science Foundation of Shandong Province(ZR2021MB135)Natural Science Foundation of Shandong Province(ZR2021ME224).
文摘It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022)。
文摘Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.
文摘Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.
基金the National Natural Science Foundation of China(Grant Nos.51874264 and 52076200)。
文摘Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.
基金Ningbo Natural Science Foundation (No. 2006A610016)Foundation of National Education Ministry for Returned Overseas Students & Scholars (SRF for ROCS, SEM. No.2006699).
文摘Acquiring the size gradation for particle aggregates is a common practice in the granule related industry,and mechanical sieving or screening has been the normal method. Among many drawbacks of this conventional means,the major ones are time-consuming,labor-intensive,and being unable to provide real-time feedback for process control. In this letter,an optical sieving approach is introduced. The two-dimensional images are used to develop methods for inferring particle volume and sieving behavior for gradation purposes. And a combination of deterministic and probabilistic methods is described to predict the sieving behaviors of the particles and to construct the gradation curves for the aggregate sample. Comparison of the optical sieving with standard mechanical sieving shows good correlation.
文摘Vortexing limestone injection into furnace combined with calcium lime hydration in the downstream is the most promising technology for controlling SO 2 emission. Particle imaging velocimetry (PIV) is used to measure the gas liquid solid three phase flow field in a reactor. By image processing based on newly developed software, the number concentrations of sorbent particles and water droplets are presented. The measuring results are very helpful for better understanding the desulfurization mechanism and optimizing configurational and operational parameters in the hydration reactor.
基金supported by National Natural Science Foundation of China(Nos.61971345 and 52107174)。
文摘Dielectric barrier discharge(DBD)plasma actuators are widely used in active flow control due to their simple design and rapid responsiveness.However,they need more effectiveness and discharge extension.To overcome these limitations,a sector-shaped dielectric barrier discharge(SS-DBD)plasma actuator with an adjustable jet angle was developed to enhance flow control effectiveness.The flow field dynamics induced by the SS-DBD plasma actuator were quantitatively analyzed using particle image velocimetry(PIV).Experimental investigations showed that precise adjustments to the actuation voltage can modulate the maximum velocity of the induced jet.Furthermore,a quasi-linear relationship between the sector-shaped angles of the SS-DBD and the deflected jet angles was established,indicating that changes in the sector-shaped angles directly influence the direction of the deflected jet.This correlation enables precise control over jet angles,significantly enhancing flow control by adjusting the SS-DBD-PA's sector-shaped angle.
文摘Aim To investigate the spray particle velocity and its distribution characteristics. Methods\ A set of PIV (particle image velocimetry) system was developed and used to observe and analyze the spray particle velocity field. Results and Conclusion\ Double exposure image of the spray particle within the region of 10-50 mm from the nozzle tip was recorded and analyzed by the IBAS2000 analysis system. Some characteristics of the spray particle velocity and its distribution were obtained.
基金the Natural Science Foundation of Hebei Province(No.E2020203052)the S&T Program of Hebei(No.236Z1901G).
文摘Magnetic-liquid double suspension bearing(MLDSB)is a new type of suspension bearing based on electromagnetic suspension and supplemented by hydrostatic supporting.Without affecting the electromagnetic suspension force,the hydrostatic supporting effect is increased,and the real-time coupling of magnetic and liquid supporting can be realized.However,due to the high rotation speed,the rotor part produces eddy current loss,resulting in a large temperature rise and large ther-mal deformation,which makes the oil film thickness deviate from the initial design.The support and bearing characteristics are seriously affected.Therefore,this paper intends to explore the internal effects of eddy current loss of the rotor on the temperature rise and thermal deformation of MLDSB.Firstly,the 2D magnetic flow coupling mathematical model of MLDSB is established,and the eddy current loss distribution characteristics of the rotor are numerically simulated by Maxwell software.Secondly,the internal influence of mapping relationship of structural operating parameters such as input current,coil turns and rotor speed on rotor eddy current loss is revealed,and the changing trend of rotor eddy current loss under different design parameters is explored.Thirdly,the eddy cur-rent loss is loaded into the heat transfer finite element calculation model as a heat source,and the temperature rise of the rotor and its thermal deformation are simulated and analyzed,and the influ-ence of eddy current loss on rotor temperature rise and thermal deformation is revealed.Finally,the pressure-flow curve and the distribution law of the internal flow field are tested by the particle image velocimetry(PIV)system.The results show that eddy current loss increases linearly with the in-crease of coil current,coil turns and rotor speed.The effect of rotational speed on eddy current loss is much higher than that of coil current and coil turns.The maximum temperature rise,minimum temperature rise and maximum thermal deformation of the rotor increase with the increase of eddy current loss.The test results of flow-pressure and internal trace curves are basically consistent with the theoretical simulation,which effectively verifies the correctness of the theoretical simulation.The research results can provide theoretical basis for the design and safe and stable operation of magnetic fluid double suspension bearings.
文摘Given image sequences of closely packed particles, the underlying aim is to estimate diameters without explicit segmentation. In a way, this is similar to the task of counting objects without directly counting them. Such calculations may, for example, be useful)Cast estimation of particle size in different application areas. The topic is that of estimating average size (=average diameter) of packed particles, from formulas involving edge density, and the edges from moment-based thresholding are used. An average shape factor is involved in the calculations, obtained for some frames from crude partial segmentation. Measurement results from about 80frames have been analyzed.
基金Supported by the National Natural Science Foundation of China(Nos.31072246,31272703)
文摘This article reports a particle image velocimetry study and the comparative results of a numerical simulation into the hydrodynamic characteristics around an artificial reef.We reveal the process of flow separation and vortex evolution,and compare the force terms generated by our artificial reef model.The numerical simulation agrees well with experimental results,showing the applicability of computational fluid dynamics to the hydrodynamics of an artificial reef.Furthermore,we numerically simulate the hydrodynamics of the reef model for seven velocities.The results show that the drag coefficient is approximately 1.21 in a self-modeling region for Reynolds numbers between 2.123×104and 9×104.Therefore,the upwelling height and current width of the flow field do not change significantly when the inflow velocity increases.Our study indicates that computational fluid dynamics can be applied to study the hydrodynamics of an artificial reef and offer clues to its construction.
基金Supported by the National Natural Science Foundation of China (20776008)and the National Basic Research Program of China (2007CB714300).
文摘The flow fields in a dual Rushton impeller stirred tank with diameter of 0.48 m (T) were measured by using Particle Image Velocimetry (PIV). Three different size impellers were used in the experiments with diameters of D = 0.33T, 0.40T and 0.50T, respectively. The multi-block and 360° ensemble-averaged approaches were used to measure the radial and axial angle-resolved velocity distributions. Three typical flow patterns, named, merging flow, parallel flow and diverging flow, were obtained by changing the clearance of the bottom impeller above the tank base (C1) and the spacing between the two impellers (C2). The results show that while C1 is equal to D, the parallel flow occurs as C2≥0.40T, C2≥0.38T and C2≥0.32T and the merging flow occurs as C2≤0.38T, C2≤0.36T and C2≤0.27T for the impellers with diameter of D=0.33T, 0.40T and 0.50T, respectively. When C2 is equal to D, the diverging flow occurs in the value of C1≤0.15T for all three impellers. The flow numbers of these impellers were calculated for the parallel flow. Trailing vortices generated by the lower impeller for the diverging flow were shown by the 10° angle-resolved velocity measurements. The peak value of turbulence kinetic energy ( k/V^2tip = 0.12-0.15 or above) appears along the center of the impeller discharging stream.
基金Supported by the National Natural Science Foundation of China (20776008, 20821004) and the National Basic Research Program of China (2007CB714300).
文摘Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impellers of 0.19 m diameter ( D = 0.4T ). The developed flow patterns depend on the clearance of the lower impeller above the base of the vessel, the spacing between the two impellers, and the submergence of the upper impeller below the liq- uid surface. Their combinations can generate three basic flow patterns, named, parallel, merging and diverging flows. The results of velocity measurement show that the flow characteristics in the impeller jet flow region changes very little for different positions. Average velocity, trailing vortices and shear strain rate distributions for three flow patterns were measured by using PIV technique. The characteristics of trailing vortex and its trajectory were described in detail for those three flow patterns. Since the space-resolution of PIV can only reach the sub-grid rather than the Kolmogorov scale, a large-eddy PIV analysis has been used to estimate the distribution of the turbulent kinetic energy dissipation. Comparison of the distributions of turbulent kinetic energy and dissipation rate in merging flow shows that the highest turbulent kinetic energy and dissipation are both located in the vortex regions, but the maxima are at somewhat different lo- cations behind the blade. About 37% of the total energy is dissipated in dual impeller jet flow regions. The obtained distribution of shear strain rate for merging flow is similar to that of turbulence dissipation, with the shear strain rate around the trailing vortices much higher than in other areas.
基金Project(104244) supported by the Natural Sciences and Engineering Research Council of Canada
文摘A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement to 3D based on a binocular vision model,where two cameras with a well geometrical setting were utilized to image the same object simultaneously.This system utilized two open software packages and some simple programs in MATLAB,which can easily be adjusted to meet user needs at a low cost.The failure planes form an angle with the horizontal line,which are measured at 27°-29°,approximately three-fourths of the frictional angle of soil.The edge of the strain wedge formed in front of the pile is an arc,which is slightly different from the straight line reported in the literature.The active and passive influence zones are about twice and six times of the diameter of the pile,respectively.The test demonstrates the good performance and feasibility of this stereo-PIV system for more advanced geotechnical testing.
文摘In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns were studied. One was that the impeller runs at constant speed, the other was that the impellerruns at time-dependent speed and in a periodic way. The emphasis of the paper was on the comparison of meanand RMS velocity vector maps and profiles between these two types of motion patterns, and especial attention waspaid to the comparison of the mean velocity, time-averaged RMS velocity, phase averaged RMS velocity betweenthe constant 3 RPS (revolution per second) and time-dependent operation. The Reynolds number was between 763and 1527. The study explained the mechanism that time-dependent RPS is more efficient for mixing than that ofconstant RPS.
基金supported by National Natural Science Foundation of China (Grant No. 50575017, Grant No. 50875016)
文摘The failure of a drilling pump is always due to the break of the drilling pump valve, which is one of the most important but also the weakest parts of the drilling pump. Over the decades, the degradation of drilling pump valves has been investigated extensively and various failure mechanisms have been proposed. However, no experimental test on the fluid has been successfully performed to support some of these mechanisms. In this paper, tests of the flow within the valve play are carried out to investigate the factors resulting in the failure of the valve. In the tests, particle image velocimetry(PIV) technology is employed to measure the flow field distribution of the valve play in the model. From these tests, the distributions of velocity and vorticity of fluid in 'various valves with different valve angles and different valve lifts are obtained, from which the features of flow fields are derived and generalized. Subsequently, a general rule of the influence of valve angles and valve lifts on the flow velocity is concluded according to chart analyses of maximal velocities and mean velocities. Finally, an analysis is made on the possibility of valve failure caused by erosion and abrasion in a working valve, with the application of the failure mechanisms of drilling pump valves. PIV measurement improves the study on the failure of the drilling pump valve, and the results show good agreement with previous computational fluid dynamics(CFD) simulations.
基金Project supported by the National Natural Science Foundation of China(Nos.1332006,11272233,11202122,and 11411130150)the National Fundamental Research Program of China(973 Program)(No.2012CB720101)
文摘The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.
基金Project supported by the National Basic Research Program of China (973 Program) (No. 2007CB714600)
文摘Large-view flow field measurements using the particle image velocimetry (PIV) technique with high resolution CCD cameras on a rotating 1/8 scale blade model of the NREL UAE phase VI wind turbine are conducted in the engineering-oriented q53.2 m wind tunnel. The motivation is to establish the database of the initiation and development of the tip vortex to study the flow structure and mechanism of the wind turbine. The results show that the tip vortex first moves inward for a very short period and then moves outward with the wake expansion, while its vorticity decreases with time after being trailed from the trailing edge of the blade tip, and then increases continuously with the rapid rolling-up to form a strong tip vortex. The measurements also indicate that the downstream movement of the tip vortex is nearly linear in the very near wake under the test condition.
基金This project is supported by National Natural Science Foundation of China(No.50136030) Opening Research Work from Key Laboratory of Jiangsu Province on Hydro-Dynamics Engineering in Yangzhou University, China.
文摘A special transparent centrifugal pump is designed. Detailed opticalmeasurements of the flow inside the rotating passages of a five-bladed shroud centrifugal pumpimpeller have been performed by using two-dimensional particle image velocimetry (PIV). The flow issurveyed at three load conditions q_V/q_(Vd) = 0.4, q_V/q_(Vd) = 1.0, q_V/q_(Vd) = 1.5,respectively. As a result, phase averaged PIV velocity vector maps on three planes between hub andshroud of the impeller are presented. At design load, the mean field of relative velocity ispredominantly vane congruent, showing well-behaved flow without separation. The distributions of therelative velocity on different plane along the pump shaft are very different and there is always alow velocity zone near the pressure-side of the blade at both low and design flow rate, but thelow-velocity-zone at the low flow rate is much larger than that at the design one. The studydemonstrates that the PIV technique is efficient in providing reliable and detailed velocity dataover a full impeller passage.
基金supported by National Outstanding Young Scientists Founds of China (Grant No. 50825902)National Key Technology R&D Program of China (Grant No. 2008BAF34B15)+2 种基金National Natural Science Foundation of China (Grant No. 51079062)Jiangsu Provincial 333 High-level Personal Training Project of ChinaJiangsu Provincial Six Talent Peak of China
文摘The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps.