The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A se...The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.展开更多
Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sedime...Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.展开更多
The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting...The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.展开更多
A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C...A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.展开更多
The motion of particle clouds(i.e.,sediment clouds)usually can be found in engineering applications such as wastewater discharge,land reclamation,and marine bed capping.In this paper,a series of laboratory tests are c...The motion of particle clouds(i.e.,sediment clouds)usually can be found in engineering applications such as wastewater discharge,land reclamation,and marine bed capping.In this paper,a series of laboratory tests are conducted on coral sand to investigate the shape feature of the single particle and the mixing processes of the coral sand particle clouds.The shape of coral sand particle is measured and quantified.The experimental results demonstrate that the shape of coral sand particles tends to be spherical as the particle size decreases,and empirical equations were established to explain the variation of D50 and fS,50 of coral sand.Compared with the silica sand,the evolution of the coral sand particle cloud still experiences three stages,but the threshold for the Reynolds number of particle clouds entering the next stage changes.Further,the normalized axial distance of the coral sand particle clouds is 58%smaller.The frontal velocity exhibits similar varying tendency for the coral sand particle cloud.Considering the difference in shape between coral sand particles and silica sand particles,a semi-empirical formula was proposed based on the original silica sand prediction formula by adding the shape factor and the experimental data of 122μm≤D_(50)≤842μm.It can predict the frontal velocity of the coral sand particle clouds.展开更多
To characterize the shape of sand particles for concrete,a new method is proposed based on digital image processing(known as the DIP method).By analyzing sand particles projection,the length,width and thickness of san...To characterize the shape of sand particles for concrete,a new method is proposed based on digital image processing(known as the DIP method).By analyzing sand particles projection,the length,width and thickness of sand were measured to characterize particle form.The area and perimeter were measured to characterize particle angularity.The results of the DIP method and Vernier caliper were compared to examine the accuracy of the DIP method.The sample size test was conducted to show the statistical significance of shape results measured by the DIP method.The practicality of the DIP method was verified by instance analysis.The results show that aspect ratios and roundness measured by the DIP method are equal to ones by the Vernier caliper.Results by DIP are dependent on the sand particle number,and at least 350 particles should be measured to represent the overall shape property of sand.The results show that the DIP method is able to distinguish the differences in the shape of sand particles.It achieves the direct measurement of sand particle thickness,and the characterization results of sand aspect ratios and roundness are accurate,statistically significant and practical.Therefore,the DIP method is suitable for sand particle shape characterization.展开更多
How catalyst shape affects its deactivation is a crucial issue for quickly decaying catalysts such as zeolite in 2-butene and isobutane alkylation.In this work,steady simulations are used to determine the temperature ...How catalyst shape affects its deactivation is a crucial issue for quickly decaying catalysts such as zeolite in 2-butene and isobutane alkylation.In this work,steady simulations are used to determine the temperature and species distribution in fixed beds filled with particles of four shapes.Subsequently,unsteady simulations are used to study the deactivation behavior of the catalysts based on the steady simulation results.We describe the deactivation rate and type of catalyst deactivation by defining a local internal diffusivity,which is affected by catalytic activity.The results reveal that the internal diffusion distance of the catalyst determines the deactivation rate,whereas the local internal diffusivity determines its deactivation type.展开更多
Assuming spheroidal and spherical particle shapes for mineral dust aerosols,the effect of particle shape on dust aerosol optical depth retrievals,and subsequently on instantaneous shortwave direct radiative forcing(S...Assuming spheroidal and spherical particle shapes for mineral dust aerosols,the effect of particle shape on dust aerosol optical depth retrievals,and subsequently on instantaneous shortwave direct radiative forcing(SWDRF) at the top of the atmosphere(TOA),is assessed based on Moderate Resolution Imaging Spectroradiometer(MODIS) data for a case study.Specifically,a simplified aerosol retrieval algorithm based on the principle of the Deep Blue aerosol retrieval method is employed to retrieve dust aerosol optical depths,and the Fu–Liou radiative transfer model is used to derive the instantaneous SWDRF of dust at the TOA for cloud-free conditions.Without considering the effect of particle shape on dust aerosol optical depth retrievals,the effect of particle shape on the scattering properties of dust aerosols(e.g.,extinction efficiency,single scattering albedo and asymmetry factor) is negligible,which can lead to a relative difference of at most 5% for the SWDRF at the TOA.However,the effect of particle shape on the SWDRF cannot be neglected provided that the effect of particle shape on dust aerosol optical depth retrievals is also taken into account for SWDRF calculations.The corresponding results in an instantaneous case study show that the relative differences of the SWDRF at the TOA between spheroids and spheres depend critically on the scattering angles at which dust aerosol optical depths are retrieved,and can be up to 40% for low dust-loading conditions.展开更多
Particle shape contributes to understanding the physical and chemical processes of the atmosphere and better ascer- taining the origins and chemical compositions of the particles. The particle shape can be classified ...Particle shape contributes to understanding the physical and chemical processes of the atmosphere and better ascer- taining the origins and chemical compositions of the particles. The particle shape can be classified by the aspect ratio. which can be estimated through the asymmetry factor measured with angularly resolved light scattering. An experimental method of obtaining the asymmetry factor based on simultaneous small forward angle light scattering and aerodynamic size measurements is described briefly. The near forward scattering intensity signals of three detectors in the azimuthal angles at 120° offset are calculated using the methods of T-matrix and discrete dipole approximation. Prolate spheroid particles with different aspect ratios are used as the shape models with the assumption that the symmetry axis is parallel to the flow axis and perpendicular to the incident light. The relations between the asymmetry factor and the optical size and aerodynamic size at various equivalent sizes, refractive indices, and mass densities are discussed in this paper. The numerically calculated results indicate that an elongated particle may be classified at diameter larger than 1.0 μm, and may not be distinguished from a sphere at diameter less than 0.5 μm. It is estimated that the lowest detected aspect ratio is around 1.5: I in consideration of the experimental errors.展开更多
The lattice Boltzmann method is used to study the inertial focusing and rotating characteristics of two-dimensional elliptical particles and rectangular particles in channel flow. The results show that both elliptical...The lattice Boltzmann method is used to study the inertial focusing and rotating characteristics of two-dimensional elliptical particles and rectangular particles in channel flow. The results show that both elliptical particles and rectangular particles initially located on one side and two sides of channel centerline migrate first towards the equilibrium position.Then, the single-line particle train with an increasing spacing and the staggered particle train with stable spacing are formed. The axial spacing of the staggered particle pair increases with aspect ratio and Reynolds number increasing. The staggered elliptical or rectangular particle pairs form perpendicular orientation angles, which will be more obvious at larger aspect ratio and lower Reynolds number. The single-line particle trains with different shapes seldom form the perpendicular orientation angle.展开更多
Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast a...Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.展开更多
Ni_(25)Ti_(50)Cu_(25) shape memory particle/Al matrix composite was prepared by hot pressing and further extrusion.The Ni_(25)Ti_(50)Cu_(25) particles embeded in Al matrix still keep B19 and B19 structure,and have a g...Ni_(25)Ti_(50)Cu_(25) shape memory particle/Al matrix composite was prepared by hot pressing and further extrusion.The Ni_(25)Ti_(50)Cu_(25) particles embeded in Al matrix still keep B19 and B19 structure,and have a good thermal-elastic martensitic transition with 6K thermal hysteresis,the phase transition temperatures remaining constant during cycling. The scratching force of Ni_(25)Ti_(50)Cu_(25) particle is two times that of Al matrix,When the scratching force is larger than 4.2N, the Ni_(25)Ti_(50)Cu_(25) particle is separated from Al matrix.展开更多
The effects of the milling parameters involving shape of powder particles, rotation speed, and ball-to-powder diameter (BPDR) on DEM modeling in the planetary ball mill were investigated. BPDR was varied from 1 to 10....The effects of the milling parameters involving shape of powder particles, rotation speed, and ball-to-powder diameter (BPDR) on DEM modeling in the planetary ball mill were investigated. BPDR was varied from 1 to 10. The results revealed that the size and shape of the powder particles do not give a significant change in simulation results when BPDR attains maximum value of 10. The increasing of BPDR leads to the increase of simulation time and size. Hence, the effect of change of the powder particle shape on the calculated data size is not significant. The results also revealed that the increasing rotation speed increases impact energy between powder particles.展开更多
In this study,the effects of particle shape of rigid sand and soft rubber materials on macro-scale shear response were reasoned based on micro-scale parameters.For this purpose,first,the shape properties of three diff...In this study,the effects of particle shape of rigid sand and soft rubber materials on macro-scale shear response were reasoned based on micro-scale parameters.For this purpose,first,the shape properties of three different sand and two different rubber samples were quantified using image processing techniques,and the contact model parameters were calibrated through physical experiments.The direct shear test was simulated in a two-dimensional discrete element software with realistic particle forms.The soft nature of rubber particles was reflected using body-centered cubic packing with a linear-parallel bond contact model.As a result,coordination number,distribution of contact forces(i.e.,strong contact,and fabric anisotropy),and contact sliding were derived by the numerical analyses.It has been observed that the particle shape leads to distinctive micro-scale responses due to the variations in the stiffness of the contacts.展开更多
A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder.Effects of delivery tube diameter,gas pressure,and melt superheat on powder characteristics were investigated.The concepts o...A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder.Effects of delivery tube diameter,gas pressure,and melt superheat on powder characteristics were investigated.The concepts of bluntness and outgrowth were introduced to analyze powder sphericity and satellite index quantitatively.The results showed that the median diameters of all atomized powders ranged from 25 to 33μm.The highest yield rate(72.13%)of fine powder(<50μm)was obtained at a superheat of 350 K.The powder size decreased with increasing melt superheat but increased with increasing delivery tube diameter.Powders with bluntness values between 96%and 98%accounted for over 60%.The outgrowth values demonstrated that 70%-85%of all powders did not contain satellite particles,with few powders adhered two or three particles.Not only Al and Si phases were present but also a metastable Al9Si phase was detected.展开更多
Titanium dioxide (TiO2) films with rod-like and sphere-like TiO2 particles were prepared on glass slides employing the sol-gel method. The shape and size of TiO2 particles were controlled using different concentrati...Titanium dioxide (TiO2) films with rod-like and sphere-like TiO2 particles were prepared on glass slides employing the sol-gel method. The shape and size of TiO2 particles were controlled using different concentrations of sodium dodecylbenzensulfonate (SDBS). By increasing the mole ratio of SDBS, the shape of TiO2 particles transformed from rod-like to sphere-like. Also, the size of TiO2 particles became gradually smaller. Then, the size became bigger when an excess amount of SDBS was added. The films were mainly composed of anatase titania and the relative content of anatase increased with the increasing amount of SDBS. The photocatalytic activity of the TiO2 films that were added with SDBS was higher than that without SDBS. When the concentration of SDBS was 8.0 at%, the sample exhibited the best photocatalytic activity.展开更多
TiO2 thin film was prepared on Si substrate by plasma chemical vapor deposition (PCVD) system and the morphologies of ZiO2 thin film were controlled by adjusting the initial precursor concentration. As the initial t...TiO2 thin film was prepared on Si substrate by plasma chemical vapor deposition (PCVD) system and the morphologies of ZiO2 thin film were controlled by adjusting the initial precursor concentration. As the initial titanium tetra-isopropoxide (TTIP) concentration increases in PCVD reactor, the shapes of TiO2 particles generated in PCVD reactor change from the spherical small-sized particles around 20 nm and spherical large-sized particles around 60 nm to aggregate particles around 100 nm. The TiO2 particles with different shapes deposit on the substrate and become the main building blocks of resulting TiO2 thin film. We observed the TiO2 thin film with smooth morphology at low initial TTIP concentration, granular morphology at medium initial TTIP concentration, and columnar morphology at high initial TTIP concentration. It is proposed that we can prepare the TiO2 thin film with controlled morphologies in one-step process just by adjusting the initial precursor concentration in PCVD .展开更多
Gaining in-depth insights into the effects of particle shapes and packing style on ethylene oxidation reaction is of paramount industrial importance.In this work,reactor models of five packing structures with differen...Gaining in-depth insights into the effects of particle shapes and packing style on ethylene oxidation reaction is of paramount industrial importance.In this work,reactor models of five packing structures with different particle shapes and three packing structures with different packing styles are established by employing software Blender and COMSOL Multiphysics to explore how the reaction-diffusion behaviors affect ethylene oxidation process.The reliabilities of rigid body dynamics model and particle-resolved reactor model are verified by comparing simulated and experimental pressure drops and ethylene conversions.In all the five packing structures with laminar flow conditions,the high bed porosity and low total particle surface area for the trilobe packing structure give rise to the lowest pressure drop of 27.8 Pa/m,while the internal voids cutting mode provides the excellent heat transfer capacity for the Raschig ring packing structure and the highest ethylene conversion and thereby the highest bed temperature rise of 25.1 K for the four-hole cylinder packing structure.Based on these analyses,changing the packing style to the bottom-up Raschig ring-four hole cylinder packing structure would be a good strategy for the effectively lowered reactor temperature rise by 4.8 K together with the slightly reduced ethylene conversion.展开更多
The ground powders with the same particle size distribution and the same mean particle diameter were prepared by five different types of mills. The flowability index (FI) and the particle shape indices, namely, Wadell...The ground powders with the same particle size distribution and the same mean particle diameter were prepared by five different types of mills. The flowability index (FI) and the particle shape indices, namely, Wadell's working sphericity Ψ W and circularity Ψ C, of five kinds of test powders were measured. The effect of the comminuting mechanisms on the flowability of ground powders was investigated, and the relationship between the flowability of ground powders and the particle shape indices was analyzed. The experimental results show that the ground powders obtained by collision have irregular particle shapes and smooth surfaces, showing a high flowability. On the other hand, though the particle obtained by grinding is close to a spherical particle, but it has a rugged surface, and shows a bad flowability. Furthermore, the flowability index is more correlated with the circularity than the working sphericity is. This means that the surface roughness is more effective in determining the flowability of powders than the roundness is.展开更多
An alternative method is proposed in this letter for describing the arbitrary shape and size for granules in 2D image.After image binarization, the edge points on contour are detected, by which the centroid of the sha...An alternative method is proposed in this letter for describing the arbitrary shape and size for granules in 2D image.After image binarization, the edge points on contour are detected, by which the centroid of the shape in question is sought using the moment calculation.Using Principal Component Analysis(PCA), the major and minor diameters are computed.Based on the signature curve-fitting, the first-order derivative is taken so as to seek all the characteristic vertices.By connecting the vertices found, the simplified polygon is formed and utilized for shape and size descriptive purposes.The developed algorithm is run on two given real particle images, and the execution results indicate that the computed parameters can technically well describe the shape and size for the original particles, being able to provide a ready-to-use database for machine vision system to perform related data processing tasks.展开更多
基金supported by the National Natural Science Foundation of China(21908234)the National Key Research&Development Program of China(2020YFB0606404)+1 种基金the Inner Mongolia Science and Technology Agency Program(2019CG058)Shanxi Province Natural Science Foundation(202103021223063).
文摘The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.
文摘Sediment accumulation on the bed of open sewers and drains reduces hydraulic efficiency and can cause localized flooding.Slotted invert traps installed underneath the bed of open sewers and drains can eliminate sediment build-up by catching sediment load.Previous three-dimensional(3D)computational studies have examined the particle trapping performance of invert traps of different shapes and depths under varied sediment and flow conditions,considering particles as spheres.For two-dimensional and 3D numerical modeling,researchers assumed the lid geometry to be a thin line and a plane,respectively.In this 3D numerical study,the particle trapping efficiency of a slotted irregular hexagonal invert trap fitted at the flume bottom was examined by incorporating the particle shape factor of non-spherical sewage solid particles and the thicknesses of upstream and downstream lids over the trap in the discrete phase model of the ANSYS Fluent 2020 R1 software.The volume of fluid(VOF)and the realizable k-turbulence models were used to predict the velocity field.The two-dimensional particle image velocimetry(PIV)was used to measure the velocity field inside the invert trap.The results showed that the thicknesses of upstream and downstream lids affected the velocity field and turbulent kinetic energy at all flow depths.The joint impact of the particle shape factor and lid thickness on the trap efficiency was significant.When both the lid thickness and particle shape factor were considered in the numerical modeling,trap efficiencies were underestimated,with relative errors of-8.66%to-0.65%in comparison to the experimental values of Mohsin and Kaushal(2017).They were also lower than the values predicted by Mohsin and Kaushal(2017),which showed an overall overestimation with errors of-2.3%to 17.4%.
文摘The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.
基金Projects (50832004, 51202194) supported by National Natural Science Foundation of ChinaProject (11-BZ-2012) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China+1 种基金Project (T201107) supported by Shenzhen Key Laboratory of Special Functional Materials, Shenzhen University, ChinaProject (B08040) supported by 111 Project of China
文摘A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator.
基金financially supported by the National Natural Science Foundation of China(Grant No.51839002,51979014 and 52271257)the Natural Science Foundation of Hunan Province(Grant No.2022JJ10047)the Scientific Research Innovation Project of Hunan Graduate(Grant No.CX20200858).
文摘The motion of particle clouds(i.e.,sediment clouds)usually can be found in engineering applications such as wastewater discharge,land reclamation,and marine bed capping.In this paper,a series of laboratory tests are conducted on coral sand to investigate the shape feature of the single particle and the mixing processes of the coral sand particle clouds.The shape of coral sand particle is measured and quantified.The experimental results demonstrate that the shape of coral sand particles tends to be spherical as the particle size decreases,and empirical equations were established to explain the variation of D50 and fS,50 of coral sand.Compared with the silica sand,the evolution of the coral sand particle cloud still experiences three stages,but the threshold for the Reynolds number of particle clouds entering the next stage changes.Further,the normalized axial distance of the coral sand particle clouds is 58%smaller.The frontal velocity exhibits similar varying tendency for the coral sand particle cloud.Considering the difference in shape between coral sand particles and silica sand particles,a semi-empirical formula was proposed based on the original silica sand prediction formula by adding the shape factor and the experimental data of 122μm≤D_(50)≤842μm.It can predict the frontal velocity of the coral sand particle clouds.
基金The National Key Research and Development Program of China(No.2017YFB0310100)the National Natural Science Foundation of China(No.51978318)。
文摘To characterize the shape of sand particles for concrete,a new method is proposed based on digital image processing(known as the DIP method).By analyzing sand particles projection,the length,width and thickness of sand were measured to characterize particle form.The area and perimeter were measured to characterize particle angularity.The results of the DIP method and Vernier caliper were compared to examine the accuracy of the DIP method.The sample size test was conducted to show the statistical significance of shape results measured by the DIP method.The practicality of the DIP method was verified by instance analysis.The results show that aspect ratios and roundness measured by the DIP method are equal to ones by the Vernier caliper.Results by DIP are dependent on the sand particle number,and at least 350 particles should be measured to represent the overall shape property of sand.The results show that the DIP method is able to distinguish the differences in the shape of sand particles.It achieves the direct measurement of sand particle thickness,and the characterization results of sand aspect ratios and roundness are accurate,statistically significant and practical.Therefore,the DIP method is suitable for sand particle shape characterization.
基金We acknowledge financial support from National Engineering Research Center for Petroleum Refining Technology and Catalyst(RIPP,SINOPEC,Grant No.33600000-20-ZC0607-0009).
文摘How catalyst shape affects its deactivation is a crucial issue for quickly decaying catalysts such as zeolite in 2-butene and isobutane alkylation.In this work,steady simulations are used to determine the temperature and species distribution in fixed beds filled with particles of four shapes.Subsequently,unsteady simulations are used to study the deactivation behavior of the catalysts based on the steady simulation results.We describe the deactivation rate and type of catalyst deactivation by defining a local internal diffusivity,which is affected by catalytic activity.The results reveal that the internal diffusion distance of the catalyst determines the deactivation rate,whereas the local internal diffusivity determines its deactivation type.
基金supported by the National Natural Science Foundation of China(Grant No.41276181)
文摘Assuming spheroidal and spherical particle shapes for mineral dust aerosols,the effect of particle shape on dust aerosol optical depth retrievals,and subsequently on instantaneous shortwave direct radiative forcing(SWDRF) at the top of the atmosphere(TOA),is assessed based on Moderate Resolution Imaging Spectroradiometer(MODIS) data for a case study.Specifically,a simplified aerosol retrieval algorithm based on the principle of the Deep Blue aerosol retrieval method is employed to retrieve dust aerosol optical depths,and the Fu–Liou radiative transfer model is used to derive the instantaneous SWDRF of dust at the TOA for cloud-free conditions.Without considering the effect of particle shape on dust aerosol optical depth retrievals,the effect of particle shape on the scattering properties of dust aerosols(e.g.,extinction efficiency,single scattering albedo and asymmetry factor) is negligible,which can lead to a relative difference of at most 5% for the SWDRF at the TOA.However,the effect of particle shape on the SWDRF cannot be neglected provided that the effect of particle shape on dust aerosol optical depth retrievals is also taken into account for SWDRF calculations.The corresponding results in an instantaneous case study show that the relative differences of the SWDRF at the TOA between spheroids and spheres depend critically on the scattering angles at which dust aerosol optical depths are retrieved,and can be up to 40% for low dust-loading conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.41275132)
文摘Particle shape contributes to understanding the physical and chemical processes of the atmosphere and better ascer- taining the origins and chemical compositions of the particles. The particle shape can be classified by the aspect ratio. which can be estimated through the asymmetry factor measured with angularly resolved light scattering. An experimental method of obtaining the asymmetry factor based on simultaneous small forward angle light scattering and aerodynamic size measurements is described briefly. The near forward scattering intensity signals of three detectors in the azimuthal angles at 120° offset are calculated using the methods of T-matrix and discrete dipole approximation. Prolate spheroid particles with different aspect ratios are used as the shape models with the assumption that the symmetry axis is parallel to the flow axis and perpendicular to the incident light. The relations between the asymmetry factor and the optical size and aerodynamic size at various equivalent sizes, refractive indices, and mass densities are discussed in this paper. The numerically calculated results indicate that an elongated particle may be classified at diameter larger than 1.0 μm, and may not be distinguished from a sphere at diameter less than 0.5 μm. It is estimated that the lowest detected aspect ratio is around 1.5: I in consideration of the experimental errors.
基金Project supported by the Major Program of the National Natural Science Foundation of China(Grant No.12132015)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ22A020008)the Key Research and Development Program of Zhejiang Province,China(Grant No.2020C03081)。
文摘The lattice Boltzmann method is used to study the inertial focusing and rotating characteristics of two-dimensional elliptical particles and rectangular particles in channel flow. The results show that both elliptical particles and rectangular particles initially located on one side and two sides of channel centerline migrate first towards the equilibrium position.Then, the single-line particle train with an increasing spacing and the staggered particle train with stable spacing are formed. The axial spacing of the staggered particle pair increases with aspect ratio and Reynolds number increasing. The staggered elliptical or rectangular particle pairs form perpendicular orientation angles, which will be more obvious at larger aspect ratio and lower Reynolds number. The single-line particle trains with different shapes seldom form the perpendicular orientation angle.
基金Indian Institute of Technology,Kharagpur in India for supporting this work
文摘Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.
文摘Ni_(25)Ti_(50)Cu_(25) shape memory particle/Al matrix composite was prepared by hot pressing and further extrusion.The Ni_(25)Ti_(50)Cu_(25) particles embeded in Al matrix still keep B19 and B19 structure,and have a good thermal-elastic martensitic transition with 6K thermal hysteresis,the phase transition temperatures remaining constant during cycling. The scratching force of Ni_(25)Ti_(50)Cu_(25) particle is two times that of Al matrix,When the scratching force is larger than 4.2N, the Ni_(25)Ti_(50)Cu_(25) particle is separated from Al matrix.
文摘The effects of the milling parameters involving shape of powder particles, rotation speed, and ball-to-powder diameter (BPDR) on DEM modeling in the planetary ball mill were investigated. BPDR was varied from 1 to 10. The results revealed that the size and shape of the powder particles do not give a significant change in simulation results when BPDR attains maximum value of 10. The increasing of BPDR leads to the increase of simulation time and size. Hence, the effect of change of the powder particle shape on the calculated data size is not significant. The results also revealed that the increasing rotation speed increases impact energy between powder particles.
基金Kutahya Dumlupinar University for providing Itasca's PFC2D 6.0(Particle Flow Code)software.
文摘In this study,the effects of particle shape of rigid sand and soft rubber materials on macro-scale shear response were reasoned based on micro-scale parameters.For this purpose,first,the shape properties of three different sand and two different rubber samples were quantified using image processing techniques,and the contact model parameters were calibrated through physical experiments.The direct shear test was simulated in a two-dimensional discrete element software with realistic particle forms.The soft nature of rubber particles was reflected using body-centered cubic packing with a linear-parallel bond contact model.As a result,coordination number,distribution of contact forces(i.e.,strong contact,and fabric anisotropy),and contact sliding were derived by the numerical analyses.It has been observed that the particle shape leads to distinctive micro-scale responses due to the variations in the stiffness of the contacts.
基金Project(51627805) supported by the National Natural Science Foundation of ChinaProject(2015A030312003) supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Projects(2014B010129003,2015B020238008,2016B090931006,2017B090901025) supported by the Science and Technology Research Department of Guangdong Province,ChinaProject(201604016049) supported by the Science and Technology Bureau of Guangzhou City,China
文摘A self-developed double-nozzle gas atomization technique was used to produce AlSi10Mg powder.Effects of delivery tube diameter,gas pressure,and melt superheat on powder characteristics were investigated.The concepts of bluntness and outgrowth were introduced to analyze powder sphericity and satellite index quantitatively.The results showed that the median diameters of all atomized powders ranged from 25 to 33μm.The highest yield rate(72.13%)of fine powder(<50μm)was obtained at a superheat of 350 K.The powder size decreased with increasing melt superheat but increased with increasing delivery tube diameter.Powders with bluntness values between 96%and 98%accounted for over 60%.The outgrowth values demonstrated that 70%-85%of all powders did not contain satellite particles,with few powders adhered two or three particles.Not only Al and Si phases were present but also a metastable Al9Si phase was detected.
基金supported by the Foundation of the Department of Education of Hebei Province, China (No. 2005362)the Foundation of Hebei Normal University (L2008K02)
文摘Titanium dioxide (TiO2) films with rod-like and sphere-like TiO2 particles were prepared on glass slides employing the sol-gel method. The shape and size of TiO2 particles were controlled using different concentrations of sodium dodecylbenzensulfonate (SDBS). By increasing the mole ratio of SDBS, the shape of TiO2 particles transformed from rod-like to sphere-like. Also, the size of TiO2 particles became gradually smaller. Then, the size became bigger when an excess amount of SDBS was added. The films were mainly composed of anatase titania and the relative content of anatase increased with the increasing amount of SDBS. The photocatalytic activity of the TiO2 films that were added with SDBS was higher than that without SDBS. When the concentration of SDBS was 8.0 at%, the sample exhibited the best photocatalytic activity.
基金supported by the Regional Innovation Center for Environmental Technology of Thermal Plasma(ETTP) at Inha University, designated by MKE(2009)supported from the Central Laboratory of Kangwon National University
文摘TiO2 thin film was prepared on Si substrate by plasma chemical vapor deposition (PCVD) system and the morphologies of ZiO2 thin film were controlled by adjusting the initial precursor concentration. As the initial titanium tetra-isopropoxide (TTIP) concentration increases in PCVD reactor, the shapes of TiO2 particles generated in PCVD reactor change from the spherical small-sized particles around 20 nm and spherical large-sized particles around 60 nm to aggregate particles around 100 nm. The TiO2 particles with different shapes deposit on the substrate and become the main building blocks of resulting TiO2 thin film. We observed the TiO2 thin film with smooth morphology at low initial TTIP concentration, granular morphology at medium initial TTIP concentration, and columnar morphology at high initial TTIP concentration. It is proposed that we can prepare the TiO2 thin film with controlled morphologies in one-step process just by adjusting the initial precursor concentration in PCVD .
基金financially supported by the National Key R&D Program of China(grant No.2022YFA1503503)the National Natural Science Foundation of China(grant No.22038003,21922803,22178100 and 22008066)+1 种基金the Innovation Program of Shanghai Municipal Education Commission,the Program of Shanghai Academic/Technology Research Leader(grant No.21XD1421000)the Shanghai Science and Technology Innovation Action Plan(grant No.22JC1403800).
文摘Gaining in-depth insights into the effects of particle shapes and packing style on ethylene oxidation reaction is of paramount industrial importance.In this work,reactor models of five packing structures with different particle shapes and three packing structures with different packing styles are established by employing software Blender and COMSOL Multiphysics to explore how the reaction-diffusion behaviors affect ethylene oxidation process.The reliabilities of rigid body dynamics model and particle-resolved reactor model are verified by comparing simulated and experimental pressure drops and ethylene conversions.In all the five packing structures with laminar flow conditions,the high bed porosity and low total particle surface area for the trilobe packing structure give rise to the lowest pressure drop of 27.8 Pa/m,while the internal voids cutting mode provides the excellent heat transfer capacity for the Raschig ring packing structure and the highest ethylene conversion and thereby the highest bed temperature rise of 25.1 K for the four-hole cylinder packing structure.Based on these analyses,changing the packing style to the bottom-up Raschig ring-four hole cylinder packing structure would be a good strategy for the effectively lowered reactor temperature rise by 4.8 K together with the slightly reduced ethylene conversion.
文摘The ground powders with the same particle size distribution and the same mean particle diameter were prepared by five different types of mills. The flowability index (FI) and the particle shape indices, namely, Wadell's working sphericity Ψ W and circularity Ψ C, of five kinds of test powders were measured. The effect of the comminuting mechanisms on the flowability of ground powders was investigated, and the relationship between the flowability of ground powders and the particle shape indices was analyzed. The experimental results show that the ground powders obtained by collision have irregular particle shapes and smooth surfaces, showing a high flowability. On the other hand, though the particle obtained by grinding is close to a spherical particle, but it has a rugged surface, and shows a bad flowability. Furthermore, the flowability index is more correlated with the circularity than the working sphericity is. This means that the surface roughness is more effective in determining the flowability of powders than the roundness is.
基金Supported by the Ningbo Natural Science Foundation (No.2006A610016)
文摘An alternative method is proposed in this letter for describing the arbitrary shape and size for granules in 2D image.After image binarization, the edge points on contour are detected, by which the centroid of the shape in question is sought using the moment calculation.Using Principal Component Analysis(PCA), the major and minor diameters are computed.Based on the signature curve-fitting, the first-order derivative is taken so as to seek all the characteristic vertices.By connecting the vertices found, the simplified polygon is formed and utilized for shape and size descriptive purposes.The developed algorithm is run on two given real particle images, and the execution results indicate that the computed parameters can technically well describe the shape and size for the original particles, being able to provide a ready-to-use database for machine vision system to perform related data processing tasks.