Virtual simulation technology is of great importance for the teleoperation of lunar rovers during the exploration phase, as well as the design of locomotion systems, performance evaluation, and control strategy verifi...Virtual simulation technology is of great importance for the teleoperation of lunar rovers during the exploration phase, as well as the design of locomotion systems, performance evaluation, and control strategy verification during the R&D phase. The currently used simulation methods for lunar rovers have several disadvantages such as poor fidelity for wheel-soil interaction mechanics, difficulty in simulating rough terrains, and high complexity making it difficult to realize mobility control in simulation systems. This paper presents an approach for the construction of a virtual simulation system that integrates the features of 3D modeling, wheel-soil interaction mechanics, dynamics analysis, mobility control, and visualization for lunar rovers. Wheel-soil interaction experiments are carried out to test the forces and moments acted on a lunar rover’s wheel by the soil with a vertical load of 80 N and slip ratios of 0, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.6. The experimental results are referenced in order to set the parameters’ values for the PAC2002 tire model of the ADAMS/Tire module. In addition, the rough lunar terrain is simulated with 3DS Max software after analyzing its characteristics, and a data-transfer program is developed with Matlab to simulate the 3D reappearance of a lunar environment in ADAMS. The 3D model of a lunar rover is developed by using Pro/E software and is then imported into ADAMS. Finally, a virtual simulation system for lunar rovers is developed. A path-following control strategy based on slip compensation for a six-wheeled lunar rover prototype is researched. The controller is implemented by using Matlab/Simulink to carry out joint simulations with ADAMS. The designed virtual lunar rover could follow the planned path on a rough terrain. This paper can also provide a reference scheme for virtual simulation and performance analysis of rovers moving on rough lunar terrains.展开更多
Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies s...Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.展开更多
Path-following control is one of the key technologies of autonomous vehicles,but the complex coupling effects and system uncertainties of vehicles can degrade their control performance.Accordingly,this study proposes ...Path-following control is one of the key technologies of autonomous vehicles,but the complex coupling effects and system uncertainties of vehicles can degrade their control performance.Accordingly,this study proposes targeted methods to solve different types of coupling in vehicle dynamics.First,the types of coupling are figured out and different handling strategies are proposed for each type,among which the coupling caused by steering angle,unsaturated tire forces,and load transfer can be treated as uncertainties in a unified form,such that the coupling effects can be treated in a decoupling way.Then,robust control methods for both lateral and longitudinal dynamics are proposed to deal with the uncertainties in dynamic and physical parameters.In lateral control,a robust feedback-feedforward scheme is utilized in lateral control to deal with such uncertainties.In longitudinal control,a radial basis function neural network-based adaptive sliding mode controller is introduced to deal with uncertainties and disturbances.In addition,the tire saturation coupling that cannot be handled by controllers is treated by a proposed speed profile.Simulation results based on the CarSim-Simulink joint platform evaluate the effectiveness and robustness of the proposed control method.The results show that compared with a well-designed robust controller,the velocity tracking performance,lateral tracking performance,and heading tracking performance improve by 55.68%,34.26%,and 52.41%,respectively,in the double-lane change maneuver,and increase by 87.79%,30.18%,and 9.68%,respectively,in the ramp maneuver.展开更多
In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condi...In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condition than the monotonicity. Based on the Nesterov-Todd, xy and yx directions employed as commutative search directions for semidefinite programming, we extend the variants of the short-, semilong-, and long-step path-following algorithms for symmetric conic linear programming proposed by Schmieta and Alizadeh to the Cartesian P*(κ)-SCLCP, and particularly show the global convergence and the iteration complexities of the proposed algorithms.展开更多
This paper presents applications of the continuous feedback method to achieve path-following and a formation moving along the desired orbits within a finite time.It is assumed that the topology for the virtual leader ...This paper presents applications of the continuous feedback method to achieve path-following and a formation moving along the desired orbits within a finite time.It is assumed that the topology for the virtual leader and followers is directed.An additional condition of the so-called barrier function is designed to make all agents move within a limited area.A novel continuous finite-time path-following control law is first designed based on the barrier function and backstepping.Then a novel continuous finite-time formation algorithm is designed by regarding the path-following errors as disturbances.The settling-time properties of the resulting system are studied in detail and simulations are presented to validate the proposed strategies.展开更多
In this article,we consider the primal-dual path-following method and the trust-region updating strategy for the standard linear programming problem.For the rank-deficient problem with the small noisy data,we also giv...In this article,we consider the primal-dual path-following method and the trust-region updating strategy for the standard linear programming problem.For the rank-deficient problem with the small noisy data,we also give the preprocessing method based on the QR decomposition with column pivoting.Then,we prove the global convergence of the new method when the initial point is strictly primal-dual feasible.Finally,for some rankdeficient problems with or without the small noisy data from the NETLIB collection,we compare it with other two popular interior-point methods,i.e.the subroutine pathfollow.m and the built-in subroutine linprog.m of the MATLAB environment.Numerical results show that the new method is more robust than the other two methods for the rank-deficient problem with the small noise data.展开更多
This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direc...This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direction is exactly the classical Newton direction.When the parameterθis independent of the rank of the associated Euclidean Jordan algebra,the algorithm terminates in at most O(κr logε−1)iterations,which coincides with the best known iteration bound for the classical wide neighborhood algorithms.When the parameterθ=√n/βτand Nesterov–Todd search direction is used,the algorithm has O(√r logε−1)iteration complexity,the best iteration complexity obtained so far by any interior-point method for solving SCP.To our knowledge,this is the first time that a class of interior-point algorithms including the classical wide neighborhood path-following algorithm is proposed and analyzed over symmetric cone.展开更多
In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constrain...In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constraint of an actuator,uncertainties in aerodynamic parameters and measurements,and control system complexity.Owing to the fairly high rotation speed,the dynamic model of this missile is strongly nonlinear,uncertain and coupled in pitch,yaw and roll channels.A theoretical equivalent resultant force and uncertainty compensation method are comprehensively used to realize decoupling of pitch and yaw.In response to the strong nonlinear and time-varying characteristics of the dynamic system,the quasi-linear model whose parameters are obtained by interpolation of points selected as the segmentation points in the trajectory envelope,is used for calculation in each step.To cope with the system uncertainty caused by model approximation,parameter uncertainty and ballistic interference,an extended state estimator is used to compensate the output feedback according to the test ballistic angle.In order to improve the tracking efficiency and ensure the tracking error convergence with only translational motion information,the virtual guide point,whose derivative is deduced according to the Lyapunov principle,is calculated in real time according to the projection relationship between the real-time position and the reference trajectory,and a virtual line-of-sight angle and the backstepping method are used for the design of the guidance and control system.In order to avoid the influence of control input saturation on the guidance and control performance due to the actuator limitation and improve the robustness of the system,an anti-saturation compensator is designed according to the two-step method.The feasibility and effectiveness of the path-following controller is verified through closed-loop flight simulations with measurement,control,and condition uncertainties.The results indicate that the designed controller can converge to the reference path and evidently decrease the distance between the impact point and target under different uncertainties.展开更多
With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during th...With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during the last decades.Particularly due to the demand of various civil applications,the conceptual design of UAV and autonomous flight control technology have been promoted and developed mutually.This paper is devoted to providing a brief review of the UAV control issues,including motion equations,various classical and advanced control approaches.The basic ideas,applicable conditions,advantages and disadvantages of these control approaches are illustrated and discussed.Some challenging topics and future research directions are raised.展开更多
This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following str...This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following strategy and an omni-directional local phase slope estimator.This technique performs simultaneously noise filtering and phase unwrapping along the high-quality region to the low-quality region,which is also able to avoid going directly through the noisy regions.In addition,phase slope is estimated directly from the sample frequency spectrum of the complex interferogram,by which the underestimation of phase slope is overcome.Simulation and real data processing results validate the effectiveness of the proposed method,and show a significant improvement with respect to the extended Kalman filtering(EKF) algorithm and some conventional phase unwrapping algorithms in some situations.展开更多
A novel 3-D MUSIC algorithm based on the classical 3D-MUSIC algorithm for the location of near-field source was presented. Under the far-field assumption of actual near-field, two algebraic relations of the location p...A novel 3-D MUSIC algorithm based on the classical 3D-MUSIC algorithm for the location of near-field source was presented. Under the far-field assumption of actual near-field, two algebraic relations of the location parameters between the actual near-field sources and the far-field ones were derived. With Fourier transformation and polynomial-root methods, the elevation and the azimuth of the far-field were obtained, the tracking paths can be developed, and the location parameters of the near-field source can be determined, then the more accurate results can be estimated using an optimization method. The computer simulation results prove that the algorithm for the location of the near-fields is more accurate, effective and suitable for real-time applications.展开更多
Purpose–Two-handed automobile steering at low vehicle speeds may lead to reduced steering ability at large steering wheel angles and shoulder injury at high steering wheel rates(SWRs).As afirst step toward solving the...Purpose–Two-handed automobile steering at low vehicle speeds may lead to reduced steering ability at large steering wheel angles and shoulder injury at high steering wheel rates(SWRs).As afirst step toward solving these problems,this study aims,firstly,to design a surface electromyography(sEMG)controlled steering assistance interface that enables hands-free steering wheel rotation and,secondly,to validate the effect of this rotation on path-following accuracy.Design/methodology/approach–A total of 24 drivers used biceps brachii sEMG signals to control the steering assistance interface at a maximized SWR in three driving simulator scenarios:U-turn,908 turn and 458 turn.For comparison,the scenarios were repeated with a slower SWR and a game steering wheel in place of the steering assistance interface.The path-following accuracy of the steering assistance interface would be validated if it was at least comparable to that of the game steering wheel.Findings–Overall,the steering assistance interface with a maximized SWR was comparable to a game steering wheel.For the U-turn,908 turn and 458 turn,the sEMG-based human–machine interface(HMI)had median lateral errors of 0.55,0.3 and 0.2 m,respectively,whereas the game steering wheel,respectively,had median lateral errors of 0.7,0.4 and 0.3 m.The higher accuracy of the sEMG-based HMI was statistically significant in the case of the U-turn.Originality/value–Although production automobiles do not use sEMG-based HMIs,and few studies have proposed sEMG controlled steering,the results of the current study warrant further development of a sEMG-based HMI for an actual automobile.展开更多
This study is dedicated to the development of a direct optimal control-based algorithm for trajectory optimization problems that accounts for the closed-loop stability of the trajectory tracking error dynamics already...This study is dedicated to the development of a direct optimal control-based algorithm for trajectory optimization problems that accounts for the closed-loop stability of the trajectory tracking error dynamics already during the optimization.Consequently,the trajectory is designed such that the Linear Time-Varying(LTV)dynamic system,describing the controller’s error dynamics,is stable,while additionally the desired optimality criterion is optimized and all enforced constraints on the trajectory are fulfilled.This is achieved by means of a Lyapunov stability analysis of the LTV dynamics within the optimization problem using a time-dependent,quadratic Lyapunov function candidate.Special care is taken with regard to ensuring the correct definiteness of the ensuing matrices within the Lyapunov stability analysis,specifically considering a numerically stable formulation of these in the numerical optimization.The developed algorithm is applied to a trajectory design problem for which the LTV system is part of the path-following error dynamics,which is required to be stable.The main benefit of the proposed scheme in this context is that the designed trajectory trades-off the required stability and robustness properties of the LTV dynamics with the optimality of the trajectory already at the design phase and thus,does not produce unstable optimal trajectories the system must follow in the real application.展开更多
redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex sep...redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex separable programming problems.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50975059, Grant No. 61005080)Postdoctoral Foundation of China (Grant No. 20100480994)+1 种基金Postdoctoral Foundation of Heilongjiang Province, Foundation of Chinese State Key Laboratory of Robotics and Systems (Grant No. SKLRS200801A02)College Discipline Innovation Wisdom Plan of China (111 Project, Grant No. B07018)
文摘Virtual simulation technology is of great importance for the teleoperation of lunar rovers during the exploration phase, as well as the design of locomotion systems, performance evaluation, and control strategy verification during the R&D phase. The currently used simulation methods for lunar rovers have several disadvantages such as poor fidelity for wheel-soil interaction mechanics, difficulty in simulating rough terrains, and high complexity making it difficult to realize mobility control in simulation systems. This paper presents an approach for the construction of a virtual simulation system that integrates the features of 3D modeling, wheel-soil interaction mechanics, dynamics analysis, mobility control, and visualization for lunar rovers. Wheel-soil interaction experiments are carried out to test the forces and moments acted on a lunar rover’s wheel by the soil with a vertical load of 80 N and slip ratios of 0, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.6. The experimental results are referenced in order to set the parameters’ values for the PAC2002 tire model of the ADAMS/Tire module. In addition, the rough lunar terrain is simulated with 3DS Max software after analyzing its characteristics, and a data-transfer program is developed with Matlab to simulate the 3D reappearance of a lunar environment in ADAMS. The 3D model of a lunar rover is developed by using Pro/E software and is then imported into ADAMS. Finally, a virtual simulation system for lunar rovers is developed. A path-following control strategy based on slip compensation for a six-wheeled lunar rover prototype is researched. The controller is implemented by using Matlab/Simulink to carry out joint simulations with ADAMS. The designed virtual lunar rover could follow the planned path on a rough terrain. This paper can also provide a reference scheme for virtual simulation and performance analysis of rovers moving on rough lunar terrains.
基金the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.62006193in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016。
文摘Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.
基金This work was supported by the key research program of the Ministry of Science and Technology(2017YFB0102603-3)the National Nature Science Foundation of China(51875061)+2 种基金Chongqing Science and Technology Program Project Basic Science and Frontier Technology(cstc2018jcyjAX0630)China Scholarship Council(201906050066)Graduate Sicentific Research/Innovation Foundation of Chongqing(CYB19063).
文摘Path-following control is one of the key technologies of autonomous vehicles,but the complex coupling effects and system uncertainties of vehicles can degrade their control performance.Accordingly,this study proposes targeted methods to solve different types of coupling in vehicle dynamics.First,the types of coupling are figured out and different handling strategies are proposed for each type,among which the coupling caused by steering angle,unsaturated tire forces,and load transfer can be treated as uncertainties in a unified form,such that the coupling effects can be treated in a decoupling way.Then,robust control methods for both lateral and longitudinal dynamics are proposed to deal with the uncertainties in dynamic and physical parameters.In lateral control,a robust feedback-feedforward scheme is utilized in lateral control to deal with such uncertainties.In longitudinal control,a radial basis function neural network-based adaptive sliding mode controller is introduced to deal with uncertainties and disturbances.In addition,the tire saturation coupling that cannot be handled by controllers is treated by a proposed speed profile.Simulation results based on the CarSim-Simulink joint platform evaluate the effectiveness and robustness of the proposed control method.The results show that compared with a well-designed robust controller,the velocity tracking performance,lateral tracking performance,and heading tracking performance improve by 55.68%,34.26%,and 52.41%,respectively,in the double-lane change maneuver,and increase by 87.79%,30.18%,and 9.68%,respectively,in the ramp maneuver.
基金supported by National Natural Science Foundation of China (Grant Nos. 10671010, 70841008)
文摘In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condition than the monotonicity. Based on the Nesterov-Todd, xy and yx directions employed as commutative search directions for semidefinite programming, we extend the variants of the short-, semilong-, and long-step path-following algorithms for symmetric conic linear programming proposed by Schmieta and Alizadeh to the Cartesian P*(κ)-SCLCP, and particularly show the global convergence and the iteration complexities of the proposed algorithms.
基金the National Natural Science Foundation of China(Nos.61973074 and 61973082)。
文摘This paper presents applications of the continuous feedback method to achieve path-following and a formation moving along the desired orbits within a finite time.It is assumed that the topology for the virtual leader and followers is directed.An additional condition of the so-called barrier function is designed to make all agents move within a limited area.A novel continuous finite-time path-following control law is first designed based on the barrier function and backstepping.Then a novel continuous finite-time formation algorithm is designed by regarding the path-following errors as disturbances.The settling-time properties of the resulting system are studied in detail and simulations are presented to validate the proposed strategies.
基金This work was supported in part by Grant 61876199 from National Natural Science Foundation of China,Grant YBWL2011085 from Huawei Technologies Co.,Ltd.,and Grant YJCB2011003HIInnovation Research Program of Huawei Technologies Co.,Ltd..The first author is grateful to professor Li-Zhi Liao for introducing him the interiorpoint methods when he visited Hong Kong Baptist University in July,2012.
文摘In this article,we consider the primal-dual path-following method and the trust-region updating strategy for the standard linear programming problem.For the rank-deficient problem with the small noisy data,we also give the preprocessing method based on the QR decomposition with column pivoting.Then,we prove the global convergence of the new method when the initial point is strictly primal-dual feasible.Finally,for some rankdeficient problems with or without the small noisy data from the NETLIB collection,we compare it with other two popular interior-point methods,i.e.the subroutine pathfollow.m and the built-in subroutine linprog.m of the MATLAB environment.Numerical results show that the new method is more robust than the other two methods for the rank-deficient problem with the small noise data.
基金the National Natural Science Foundation of China(No.11471102)the Key Basic Research Foundation of the Higher Education Institutions of Henan Province(No.16A110012)。
文摘This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direction is exactly the classical Newton direction.When the parameterθis independent of the rank of the associated Euclidean Jordan algebra,the algorithm terminates in at most O(κr logε−1)iterations,which coincides with the best known iteration bound for the classical wide neighborhood algorithms.When the parameterθ=√n/βτand Nesterov–Todd search direction is used,the algorithm has O(√r logε−1)iteration complexity,the best iteration complexity obtained so far by any interior-point method for solving SCP.To our knowledge,this is the first time that a class of interior-point algorithms including the classical wide neighborhood path-following algorithm is proposed and analyzed over symmetric cone.
文摘In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constraint of an actuator,uncertainties in aerodynamic parameters and measurements,and control system complexity.Owing to the fairly high rotation speed,the dynamic model of this missile is strongly nonlinear,uncertain and coupled in pitch,yaw and roll channels.A theoretical equivalent resultant force and uncertainty compensation method are comprehensively used to realize decoupling of pitch and yaw.In response to the strong nonlinear and time-varying characteristics of the dynamic system,the quasi-linear model whose parameters are obtained by interpolation of points selected as the segmentation points in the trajectory envelope,is used for calculation in each step.To cope with the system uncertainty caused by model approximation,parameter uncertainty and ballistic interference,an extended state estimator is used to compensate the output feedback according to the test ballistic angle.In order to improve the tracking efficiency and ensure the tracking error convergence with only translational motion information,the virtual guide point,whose derivative is deduced according to the Lyapunov principle,is calculated in real time according to the projection relationship between the real-time position and the reference trajectory,and a virtual line-of-sight angle and the backstepping method are used for the design of the guidance and control system.In order to avoid the influence of control input saturation on the guidance and control performance due to the actuator limitation and improve the robustness of the system,an anti-saturation compensator is designed according to the two-step method.The feasibility and effectiveness of the path-following controller is verified through closed-loop flight simulations with measurement,control,and condition uncertainties.The results indicate that the designed controller can converge to the reference path and evidently decrease the distance between the impact point and target under different uncertainties.
基金supported by the National Natural Science Foundation of China(62073019)。
文摘With the rapid development of computer technology,automatic control technology and communication technology,research on unmanned aerial vehicles(UAVs)has attracted extensive attention from all over the world during the last decades.Particularly due to the demand of various civil applications,the conceptual design of UAV and autonomous flight control technology have been promoted and developed mutually.This paper is devoted to providing a brief review of the UAV control issues,including motion equations,various classical and advanced control approaches.The basic ideas,applicable conditions,advantages and disadvantages of these control approaches are illustrated and discussed.Some challenging topics and future research directions are raised.
基金supported by the National Natural Science Foundation of China (60772143)
文摘This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following strategy and an omni-directional local phase slope estimator.This technique performs simultaneously noise filtering and phase unwrapping along the high-quality region to the low-quality region,which is also able to avoid going directly through the noisy regions.In addition,phase slope is estimated directly from the sample frequency spectrum of the complex interferogram,by which the underestimation of phase slope is overcome.Simulation and real data processing results validate the effectiveness of the proposed method,and show a significant improvement with respect to the extended Kalman filtering(EKF) algorithm and some conventional phase unwrapping algorithms in some situations.
文摘A novel 3-D MUSIC algorithm based on the classical 3D-MUSIC algorithm for the location of near-field source was presented. Under the far-field assumption of actual near-field, two algebraic relations of the location parameters between the actual near-field sources and the far-field ones were derived. With Fourier transformation and polynomial-root methods, the elevation and the azimuth of the far-field were obtained, the tracking paths can be developed, and the location parameters of the near-field source can be determined, then the more accurate results can be estimated using an optimization method. The computer simulation results prove that the algorithm for the location of the near-fields is more accurate, effective and suitable for real-time applications.
文摘Purpose–Two-handed automobile steering at low vehicle speeds may lead to reduced steering ability at large steering wheel angles and shoulder injury at high steering wheel rates(SWRs).As afirst step toward solving these problems,this study aims,firstly,to design a surface electromyography(sEMG)controlled steering assistance interface that enables hands-free steering wheel rotation and,secondly,to validate the effect of this rotation on path-following accuracy.Design/methodology/approach–A total of 24 drivers used biceps brachii sEMG signals to control the steering assistance interface at a maximized SWR in three driving simulator scenarios:U-turn,908 turn and 458 turn.For comparison,the scenarios were repeated with a slower SWR and a game steering wheel in place of the steering assistance interface.The path-following accuracy of the steering assistance interface would be validated if it was at least comparable to that of the game steering wheel.Findings–Overall,the steering assistance interface with a maximized SWR was comparable to a game steering wheel.For the U-turn,908 turn and 458 turn,the sEMG-based human–machine interface(HMI)had median lateral errors of 0.55,0.3 and 0.2 m,respectively,whereas the game steering wheel,respectively,had median lateral errors of 0.7,0.4 and 0.3 m.The higher accuracy of the sEMG-based HMI was statistically significant in the case of the U-turn.Originality/value–Although production automobiles do not use sEMG-based HMIs,and few studies have proposed sEMG controlled steering,the results of the current study warrant further development of a sEMG-based HMI for an actual automobile.
基金supported in part by the TUM University Foundation Fellowshipin part by the German Federal Ministry for Economic Affairs and Energy(BMWi)within the Federal Aeronautical Research Program LuFo V-3 through Project“HOTRUN”(No.20E1720A)。
文摘This study is dedicated to the development of a direct optimal control-based algorithm for trajectory optimization problems that accounts for the closed-loop stability of the trajectory tracking error dynamics already during the optimization.Consequently,the trajectory is designed such that the Linear Time-Varying(LTV)dynamic system,describing the controller’s error dynamics,is stable,while additionally the desired optimality criterion is optimized and all enforced constraints on the trajectory are fulfilled.This is achieved by means of a Lyapunov stability analysis of the LTV dynamics within the optimization problem using a time-dependent,quadratic Lyapunov function candidate.Special care is taken with regard to ensuring the correct definiteness of the ensuing matrices within the Lyapunov stability analysis,specifically considering a numerically stable formulation of these in the numerical optimization.The developed algorithm is applied to a trajectory design problem for which the LTV system is part of the path-following error dynamics,which is required to be stable.The main benefit of the proposed scheme in this context is that the designed trajectory trades-off the required stability and robustness properties of the LTV dynamics with the optimality of the trajectory already at the design phase and thus,does not produce unstable optimal trajectories the system must follow in the real application.
文摘redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex separable programming problems.