SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classi...SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classifiers Based Fault Diagnostic Model (CBFDM) which gives the 3 most possible fault causes is constructed in this paper. Five fold cross validation is chosen as the method of model selection for CBFDM. The simulated data are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of CBFDM is over 93 % even when the standard deviation of noise is 3 times larger than the normal. This model can also be used for other diagnostic problems.展开更多
SaaS software that provides services through cloud platform has been more widely used nowadays.However,when SaaS software is running,it will suffer from performance fault due to factors such as the software structural...SaaS software that provides services through cloud platform has been more widely used nowadays.However,when SaaS software is running,it will suffer from performance fault due to factors such as the software structural design or complex environments.It is a major challenge that how to diagnose software quickly and accurately when the performance fault occurs.For this challenge,we propose a novel performance fault diagnosis method for SaaS software based on GBDT(Gradient Boosting Decision Tree)algorithm.In particular,we leverage the monitoring mean to obtain the performance log and warning log when the SaaS software system runs,and establish the performance fault type set and determine performance log feature.We also perform performance fault type annotation for the performance log combined with the analysis result of the warning log.Moreover,we deal with the incomplete performance log and the type non-equalization problem by using the mean filling for the same type and combination of SMOTE(Synthetic Minority Oversampling Technique)and undersampling methods.Finally,we conduct an empirical study combined with the disaster reduction system deployed on the cloud platform,and it demonstrates that the proposed method has high efficiency and accuracy for the performance diagnosis when SaaS software system runs.展开更多
文摘SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classifiers Based Fault Diagnostic Model (CBFDM) which gives the 3 most possible fault causes is constructed in this paper. Five fold cross validation is chosen as the method of model selection for CBFDM. The simulated data are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of CBFDM is over 93 % even when the standard deviation of noise is 3 times larger than the normal. This model can also be used for other diagnostic problems.
基金This work is supported in part by the National Science Foundation of China(61672392,61373038)in part by the National Key Research and Development Program of China(No.2016YFC1202204).
文摘SaaS software that provides services through cloud platform has been more widely used nowadays.However,when SaaS software is running,it will suffer from performance fault due to factors such as the software structural design or complex environments.It is a major challenge that how to diagnose software quickly and accurately when the performance fault occurs.For this challenge,we propose a novel performance fault diagnosis method for SaaS software based on GBDT(Gradient Boosting Decision Tree)algorithm.In particular,we leverage the monitoring mean to obtain the performance log and warning log when the SaaS software system runs,and establish the performance fault type set and determine performance log feature.We also perform performance fault type annotation for the performance log combined with the analysis result of the warning log.Moreover,we deal with the incomplete performance log and the type non-equalization problem by using the mean filling for the same type and combination of SMOTE(Synthetic Minority Oversampling Technique)and undersampling methods.Finally,we conduct an empirical study combined with the disaster reduction system deployed on the cloud platform,and it demonstrates that the proposed method has high efficiency and accuracy for the performance diagnosis when SaaS software system runs.