期刊文献+
共找到6,028篇文章
< 1 2 250 >
每页显示 20 50 100
Performance-based seismic design of nonstructural building components:The next frontier of earthquake engineering 被引量:16
1
作者 Andre Filiatrault Timothy Sullivan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第S1期17-46,共30页
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components ... With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components. 展开更多
关键词 nonstructural building components performance-based earthquake engineering seismic design and analysis
下载PDF
Peak displacement patterns for the performance-based seismic design of steel eccentrically braced frames 被引量:1
2
作者 Ali Fakhraddini Hamed Saffari Mohammad Javad Fadaee 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第2期379-393,共15页
Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logi... Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis. 展开更多
关键词 performance-based seismic design direct displacement-based design DISPLACEMENT pattern eccentrically braced FRAMES steel building
下载PDF
Research on performance-based seismic design criteria
3
作者 谢礼立 马玉宏 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2002年第2期214-225,共12页
The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and e... The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same. 展开更多
关键词 performance-based design seismic design criterion fortification intensity seismic vulnerability analysis earthquake loss estimation acceptable level for earthquake human mortality
下载PDF
Seismic Design Strategy of High Pier Bridge
4
作者 Jianmin He 《Journal of World Architecture》 2024年第2期1-6,共6页
China’s infrastructure construction has been continuously improving in recent years,especially its highway construction,which spans from north to south and connects east to west.Some special areas are also interconne... China’s infrastructure construction has been continuously improving in recent years,especially its highway construction,which spans from north to south and connects east to west.Some special areas are also interconnected through bridges,but constructing highway bridges through complex terrains or across valleys and mountain gullies presents significant challenges,requiring an increase in the height of bridge piers.These bridge piers generally reach tens or even hundreds of meters in height.Furthermore,the construction of these high-pier bridges is becoming increasingly widespread.Not only do they pose greater construction challenges,but they also have higher requirements for seismic resistance.This article primarily analyzes the characteristics of high-pier bridges and proposes seismic design schemes,calculation methods,and design strategies to enhance the construction quality of high-pier bridges. 展开更多
关键词 High-end bridge CHARACTERISTIC seismic design Calculation method
下载PDF
Optimization for performance-based design under seismic demands, including social costs 被引量:1
5
作者 Oscar Moller Ricardo O.Foschi +2 位作者 Juan P.Ascheri Marcelo Rubinstein Sergio Grossman 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第2期315-328,共14页
Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time sa... Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time satisfying minimum reliability levels for the specifi ed performance criteria. Total costs include those for construction and structural damage repairs, those associated with non-structural components and the social costs of economic losses, injuries and fatalities. This paper presents a general framework to approach this problem, using a numerical optimization strategy and incorporating the use of neural networks for the evaluation of dynamic responses and the reliability levels achieved for a given set of design parameters. The strategy is applied to an example of a three-story offi ce building. The results show the importance of considering the social costs, and the optimum failure probabilities when minimum reliability constraints are not taken into account. 展开更多
关键词 earthquake engineering performance-based design OPTIMIZATION reliabiliy social costs
下载PDF
Probabilistic Performance-Based Optimum Seismic Design Framework: Illustration and Validation
6
作者 Yong Li Joel P.Conte Philip E.Gill 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第9期517-543,共27页
In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performan... In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures. 展开更多
关键词 performance-based seismic design OPTIMUM seismic design forward PBEE ANALYSIS inverse PBEE ANALYSIS uncertainty quantification hazard DEAGGREGATION
下载PDF
Performance-based methodology for assessing seismic vulnerability and capacity of buildings 被引量:12
7
作者 Lin Shibin1, Xie Lili1, 2,Gong Maosheng1,2 and Li Ming1,3 1.Institute of Engineering Mechanics,China Earthquake Administration, Harbin 150080, China 2.School of Civil Engineering,Harbin Institute of Technology,Harbin 150090, China 3.School of Civil Engineering,Shenyang Jianzhu University,Shenyang 11016, China 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期157-165,共9页
This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved ca... This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacity- demand-diagram method. The spectral displacement (Sd) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between Sd and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed. 展开更多
关键词 performance-based VULNERABILITY building damage seismic capacity software HAZUS
下载PDF
Inelastic displacement ratio of low-to mid-rise BRBFs designed under variable levels of seismicity
8
作者 Hamdy Abou-Elfath Mostafa Ramadan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期763-775,共13页
Buckling-restrained braces(BRBs)have shown their capability to provide building structures with stiffness,strength,and ductility.Estimating the seismic drifts of buckling-restrained braced frames(BRBFs)is an important... Buckling-restrained braces(BRBs)have shown their capability to provide building structures with stiffness,strength,and ductility.Estimating the seismic drifts of buckling-restrained braced frames(BRBFs)is an important design step to control structural and non-structural damage.In current practice of seismic design,the estimation of seismic drifts of BRBFs is performed by using empirical calculations that are independent upon either the type of the structural system or the design level of seismicity.In these empirical calculations,the seismic drifts are estimated by amplifying the reduced elastic drifts obtained under design lateral loading with a displacement amplification factor(DAF).The value of DAF is considered equal to the product of the response modification factor R and the inelastic displacement ratioρ.The goal of the current research is to assess the value ofρfor low-to mid-rise BRBFs designed under low and high levels of seismicity.This goal has been achieved by conducting a series of elastic and inelastic time-history analyses pertaining to an ensemble of earthquake records on 3-,6-and 9-story BRBFs.The results indicate that theρ-ratio increases with an increase in design seismic intensity and an increase in experienced inelasticity.The range ofρfor low seismicity designs ranges from 0.63 to 0.9,while for high seismicity designs this range stretches from 0.83 to 1.29.It has been found that the consideration of a generalρ-ratio of 1.0 is a reasonable estimation for the design of the BRBFs considered in this study. 展开更多
关键词 displacement amplification factor inelastic displacement ratio seismicITY buckling-restrained brace seismic drift seismic design
下载PDF
Performance-based concept on seismic evaluation of existing bridges 被引量:1
9
作者 Yu-Chi Sung Wen-I Liaoi W.Phillip Yen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期127-135,共9页
Conventional seismic evaluation of existing bridges explores the ability of a bridge to survive under significant earthquake excitations. This approach has several major drawbacks, such as only a single structural per... Conventional seismic evaluation of existing bridges explores the ability of a bridge to survive under significant earthquake excitations. This approach has several major drawbacks, such as only a single structural performance of near collapse is considered, and the simplified approach of adopting strength-based concept to indirectly estimate the nonlinear behavior of a structure lacks accuracy. As a result, performance-based concepts that include a wider variety of structural performance states of a given bridge excited by different levels of earthquake intensity is needed by the engineering community. This paper introduces an improved process for the seismic evaluation of existing bridges. The relationship between the overall structural performance and earthquakes with varying levels of peak ground acceleration (PGA) can successfully be linked. A universal perspective on the seismic evaluation of bridges over their entire life-cycle can be easily obtained to investigate multiple performance objectives. The accuracy of the proposed method, based on pushover analysis, is proven in a case study that compares the results from the proposed procedure with additional nonlinear time history analyses. 展开更多
关键词 pushover analysis plastic hinge seismic capacity seismic demand performance-based concepts
下载PDF
The Ultimate Anti-Seismic Design Method
10
作者 Ioannis N. Lymperis 《Open Journal of Civil Engineering》 2023年第4期771-801,共31页
The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achiev... The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achieved by controlling the deformations of the structure. Damage and deformation are closely related concepts since the control of deformations also controls the damage. The design method of applying artificial compression to the ends of all longitudinal reinforced concrete walls and, at the same time, connecting the ends of the walls to the ground using ground anchors placed at the depths of the boreholes, transfers the inertial stresses of the structure in the ground, which reacts as an external force in the structure’s response to seismic displacements. The wall with the artificial compression acquires dynamic, larger active cross-section and high axial and torsional stiffness, preventing all failures caused by inelastic deformation. By connecting the ends of all walls to the ground, we control the eigenfrequency of the structure and the ground during each seismic loading cycle, preventing inelastic displacements. At the same time, we ensure the strong bearing capacity of the foundation soil and the structure. By designing the walls correctly and placing them in proper locations, we prevent the torsional flexural buckling that occurs in asymmetrical floor plans, and metal and tall structures. Compression of the wall sections at the ends and their anchoring to the ground mitigates the transfer of deformations to the connection nodes, strengthens the wall section in terms of base shear force and shear stress of the sections, and increases the strength of the cross-sections to the tensile at the ends of the walls by introducing counteractive forces. The use of tendons within the ducts prevents longitudinal shear in the overlay concrete, while anchoring the walls to the foundation not only dissipates inertial forces to the ground but also prevents rotation of the walls, thus maintaining the structural integrity of the beams. The prestressing at the bilateral ends of the walls restores the structure to its original position even inelastic displacements by closing the opening of the developing cracks. 展开更多
关键词 ULTIMATE Control-System ANTI-seismic EARTHQUAKES CONSTRUCTION METHOD design
下载PDF
Ground Motion and Site Effects on Performance-Based Design
11
作者 Antonio Ferraro Salvatore Grasso Michele Maugeri 《Journal of Civil Engineering and Architecture》 2010年第7期34-41,共8页
关键词 强地面运动 性能化设计 网站分类 测量评价 地震工程 概率分析 概率水平 场地特征
下载PDF
Performance-based global reliability assessment of a high-rise frame-core tube structure subjected to multi-dimensional stochastic earthquakes 被引量:2
12
作者 Liu Zhangjun Ruan Xinxin Liu Zixin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期395-415,共21页
When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed... When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design. 展开更多
关键词 multi-dimensional stochastic ground motion dimension-reduction representation frame-core tube structure global dynamic reliability performance-based seismic design
下载PDF
Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations 被引量:68
13
作者 Li Jianzhong Peng Tianbo Xu Yan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第4期337-344,共8页
An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expans... An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expansion joints; shear key failure; and damage of the expansion joint due to the slide-induced large relative displacement between the bottom of the girder and the top of the laminated-rubber bearing. This slide, however, can actually act as a form of isolation for the substructure, and as a result, the piers and foundation of most of the bridges on state route 213 suffered minor damage. The exception was the Baihua Bridge, which suffered severe damage. Corresponding seismic design recommendations are presented based on this investigation. 展开更多
关键词 Wenchuan earthquake bridge damage investigation seismic design recommendation
下载PDF
Lessons learned from the “5.12” Wenchuan Earthquake:evaluation of earthquake performance objectives and the importance of seismic conceptual design principles 被引量:24
14
作者 Wang Yayong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期255-262,共8页
Many different types of buildings were severely damaged or collapsed during the May 12, 2008 Great Wenchuan Earthquake. Based on survey data collected in regions that were subjected to moderate to severe earthquake in... Many different types of buildings were severely damaged or collapsed during the May 12, 2008 Great Wenchuan Earthquake. Based on survey data collected in regions that were subjected to moderate to severe earthquake intensities, a comparison between the observed building damage, and the three earthquake performance objectives and seismic conceptual design principles specified by the national "Code for Seismic Design of Buildings GB50011-2001," was carried out. Actual damage and predicted damage for a given earthquake level for different types of structures is compared. Discussions on seismic conceptual design principles, with respect to multiple defense lines, strong column-weak beam, link beam of shear walls, ductility detailing of masonry structures, exits and staircases, and nonstructural elements, etc. are carried out. Suggestions for improving the seismic design of structures are also proposed. It is concluded that the seismic performance objectives for three earthquake levels, i.e., "no failure under minor earthquake level, ""repairable damage under moderate earthquake level" and "no collapse under major earthquake level" can be achieved if seismic design principles are carried out by strictly following the code requirements and ensuring construction quality. 展开更多
关键词 Wenchuan Earthquake building damage seismic conceptual design multiple defense lines
下载PDF
Seismic fragility assessment of RC frame structure designed according to modern Chinese code for seismic design of buildings 被引量:12
15
作者 D. Wu S. Tesfamariam +1 位作者 S.F. Stiemer D. Qin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第3期331-342,共12页
Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese C... Following several damaging earthquakes in China, research has been devoted to find the causes of the collapse of reinforced concrete (RC) building sand studying the vulnerability of existing buildings. The Chinese Code for Seismic Design of Buildings (CCSDB) has evolved over time, however, there is still reported earthquake induced damage of newly designed RC buildings. Thus, to investigate modern Chinese seismic design code, three low-, mid- and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model (PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center. Finally, the PSDM was used to generate fragility curves for immediate occupancy, significant damage, and collapse prevention damage levels. Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level. 展开更多
关键词 building damage criteria collapse ratio probabilistic seismic demand model (PSDM) fragility curves Chinese Code for seismic design of Buildings (CCSDB)
下载PDF
Seismic design of Xiluodu ultra-high arch dam 被引量:4
16
作者 Ren-kun Wang Lin Chen Chong Zhang 《Water Science and Engineering》 EI CAS CSCD 2018年第4期288-301,共14页
The 285.5 m-high Xiluodu Arch Dam is located in a seismic region along the Jinsha River in China, where the horizontal components of peak ground accelerations for design and checking earthquakes have been estimated to... The 285.5 m-high Xiluodu Arch Dam is located in a seismic region along the Jinsha River in China, where the horizontal components of peak ground accelerations for design and checking earthquakes have been estimated to be 0.355 g and 0.423 g, respectively( g is the gravitational acceleration). The ground motion parameters of design and checking earthquakes are defined by exceedance probabilities of 2% over 100 years and 1% over 100 years, respectively. The dam shape was first selected and optimized through static analysis of the basic load combinations, and then adjusted after taking into account the seismic loads. The dam should be operational during and after the design earthquake with or without minor repairs, and maintain local and global stabilities during an extreme earthquake. Both linear elastic dynamic analysis and nonlinear dynamic analysis considering radiation damping, contraction joints, and material nonlinearity were conducted to assess the stress in the arch dam.The dynamic analysis shows that the maximum dynamic compressive stresses are less than the allowable levels, while the area with tensile stress over the limit is less than 15% of the dam surface and the maximum contraction openings range from 10 mm to 25 mm. The arch dam has sufficient earthquake-resistance capacity and meets the safety requirements. Nevertheless, steel reinforcement has been provided at the dam toe and in the zones of high tensile stress on the dam surface out of extra precaution. 展开更多
关键词 seismic design NONLINEAR DYNAMIC analysis DAM SHAPE optimization seismic strengthening Xiluodu ARCH DAM
下载PDF
Highway bridge seismic design:summary of FHWA/MCEER project on seismic vulnerability of new highway construction 被引量:3
17
作者 Ian M.Friedland Ian G.Buckle George C.Lee 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期10-19,共10页
The Federal Highway Administration (FHWA) sponsored a large,multi-year project conducted by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) titled'Seismic Vulnerability of New Highway Cons... The Federal Highway Administration (FHWA) sponsored a large,multi-year project conducted by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) titled'Seismic Vulnerability of New Highway Construction'(MCEER Project 112),which was completed in 1998.MCEER coordinated the work of many researchers,who performed studies on the seismic design and vulnerability analysis of highway bridges,tunnels,and retaining structures. Extensive research was conducted to provide revisions and improvements to current design and detailing approaches and national design specifications for highway bridges.The program included both analytical and experimental studies,and addressed seismic hazard exposure and ground motion input for the U.S.highway system;foundation design and soil behavior: structural importance,analysis,and response:structural design issues and details;and structural design criteria. 展开更多
关键词 seismic design specifications BRIDGES seismic hazard exposure ground motion input structural response analysis foundation design soil behavior
下载PDF
An improved pseudo-static method for seismic resistant design of underground structures 被引量:4
18
作者 刘如山 石宏彬 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第2期189-193,共5页
This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures... This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision. 展开更多
关键词 underground structures seismic design finite element method pseudo-static method dynamic analysis method
下载PDF
Revision of seismic design codes corresponding to building damagesin the “5.12” Wenchuan earthquake 被引量:5
19
作者 Wang Yayong Institute of Earthquake Engineering, China Academy of Building Research, Beijing 100013, China 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期147-155,共9页
A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been... A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the "Standard for classification of seismic protection of building constructions GB50223-2008" and "Code for Seismic Design of Buildings GB50011-2001." The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and precast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures. 展开更多
关键词 Wenchuan earthquake earthquake damage to buildings revision of seismic design codes
下载PDF
A Seismic Design Method for Subsea Pipelines Against Earthquake Fault Movement 被引量:3
20
作者 段梦兰 毛东风 +2 位作者 岳志勇 Segen Estefen 李志刚 《China Ocean Engineering》 SCIE EI 2011年第2期179-188,共10页
As there are no specific guidelines on design of subsea pipelines crossing active seismic faults, methods for land buried pipelines have been applied to. Taking the large seismic fault movement into account, this pape... As there are no specific guidelines on design of subsea pipelines crossing active seismic faults, methods for land buried pipelines have been applied to. Taking the large seismic fault movement into account, this paper proposes improved methods for seismic designs of subsea pipelines by comprehensively investigating the real constraining of soil on the pipelines, the interaction processes of soil with the pipeline, the plastic slippage of the soil, and the elastic-plastic properties of the pipeline materials. New formulas are given to calculate the length of transition section and its total elongation. These formulas are more reasonable in mechanism, and more practical for seismic design of subsea pipelines crossing active faults. 展开更多
关键词 subsea pipeline seismic design permanent fault movement
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部