期刊文献+
共找到385篇文章
< 1 2 20 >
每页显示 20 50 100
Toward understanding the microstructure characteristics,phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets
1
作者 Bo Yao Nan Kang +6 位作者 Xiangyu Li Dou Li Mohamed EL Mansori Jing Chen Haiou Yang Hua Tan Xin Lin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期277-294,共18页
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue... Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder. 展开更多
关键词 laser additive manufacturing(LAM) Nd-Fe-B permanent magnets numerical simulation microstructure magnetic properties
下载PDF
Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
2
作者 杨质 陈源源 +7 位作者 刘卫强 李玉卿 丛利颖 吴琼 张红国 路清梅 张东涛 岳明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期646-651,共6页
Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materia... Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materials with impurities and inhomogeneities exhibit complex magnetization behavior.Here we investigate the effects of size,volume fraction,and surroundings of inhomogeneities on the magnetic properties of an inhomogeneous magnetic material via micromagnetic simulations.The underlying magnetization reversal and coercivity mechanisms are revealed.Three different demagnetization characteristics corresponding to the exchange coupling phase,semi-coupled phase,and decoupled phase are found,depending on the size of inhomogeneities.In addition,the increase in the size of inhomogeneities leads to a transition of the coercivity mechanism from nucleation to pinning.This work could be useful for optimizing the magnetic properties of both exchange-coupled nanomagnets and inhomogeneous single-phase magnets. 展开更多
关键词 permanent magnets micromagnetic simulation EXCHANGE-COUPLING MULTILAYERS
下载PDF
Advance in the chemical synthesis and magnetic properties of nanostructured rare-earth-based permanent magnets 被引量:13
3
作者 Ce Yang Yang-Long Hou 《Rare Metals》 SCIE EI CAS CSCD 2013年第2期105-112,共8页
Rare-earth-based permanent magnets are one of the most important magnets in both scientific and industrial fields. With the development of technology, nanostructured rarearth-based permanent magnets with high energy p... Rare-earth-based permanent magnets are one of the most important magnets in both scientific and industrial fields. With the development of technology, nanostructured rarearth-based permanent magnets with high energy products are highly required. In this article, we will review the progress in chemical synthetic strategies of nanostructured rare-earth-based permanent magnets. 展开更多
关键词 RARE-EARTH permanent magnets Chemicalsynthesis
下载PDF
Rare earth permanent magnets Sm_2(Co, Fe, Cu, Zr)_17 for high temperature applications 被引量:5
4
作者 彭龙 杨青慧 +3 位作者 张怀武 徐光亮 张明 王敬东 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第3期378-382,共5页
Sintered Sm(Coba1FexCu0.1Zr0.03)7.5 (x=0.09-0.21) permanent magnets with higher Fe content were found to have higher remanence Br and maximum energy product (BH)max at room temperature. Br and (BH)max reached ... Sintered Sm(Coba1FexCu0.1Zr0.03)7.5 (x=0.09-0.21) permanent magnets with higher Fe content were found to have higher remanence Br and maximum energy product (BH)max at room temperature. Br and (BH)max reached maximum of 0.96 T and 176.7 kJ/m^3, respectively at room temperature when the Fe content x reached 0.21. However, the intrinsic coercivity Hci at room temperature increased gradually when the Fe content x increased from 0.09 to 0.15, but when x further increased to 0.21, Hcidecreased. Hci attained its peak value of 2276.6 kA/m with Fe content x=0.15 at room temperature. For magnets with x=0.15, Br, (BH)max and Hc1 reached 0.67 T, 81.2 kJ/m^3 and 509.4 kA/m at 500 ℃, respectively, showing good high temperature stability, which could be used in high temperature applications. 展开更多
关键词 rare earth permanent magnets SmCo allovs coercivitv temperature coefficient
下载PDF
Effects of oxygen and carbon on the magnetic properties and microstructure of Sm_2Co_(17) permanent magnets 被引量:4
5
作者 TIAN Jianjun ZHANG Shengen QU Xuanhui 《Rare Metals》 SCIE EI CAS CSCD 2007年第4期299-304,共6页
The research on the sintered Sm2Co17 permanent magnets prepared by metal injection molding is still at the exploratory stage. Carbon and oxygen are two key factors that influence the magnetic properties. In this artic... The research on the sintered Sm2Co17 permanent magnets prepared by metal injection molding is still at the exploratory stage. Carbon and oxygen are two key factors that influence the magnetic properties. In this article, the effects of oxygen and carbon on the properties and microstructure of the magnets have been studied. The results indicate that oxygen consumes the effective Sm content of the magnets and forms Sm2O3-the non-magnetism phase, which result in the deterioration of the magnetic properties. Besides, the magnetic properties decrease in evidence with increasing carbon content. The main factor that affects the magnetic properties is the deterioration of the microstructure of the magnets. The Sm(Co, Cu)5 phase decreases, whereas the cell size increases with the increase of the carbon content. When the carbon content is above 0.43 wt.%, the Sm(Co, Cu)5 phase is not enough to form a uniform cellular microstructure. Thus the magnetic properties disappear. ZrC is detected in the magnets by XRD when the carbon content is above 0.21 wt.%. ZrC also reduces the properties of the magnets. 展开更多
关键词 permanent magnets OXYGEN CARBON magnetic properties MICROSTRUCTURE
下载PDF
Investigation on mechanism of magnetization reversal for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element methods 被引量:4
6
作者 郑波 赵素芬 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第1期145-149,共5页
Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization pr... Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization process, the mechanism of magnetization reversal was analyzed.For the Pr2Fe14B with 10 nm grains or its composite with 10vol.% α-Fe, the coercivity was determined by nucleation of reversed domain that took place at grain boundaries.However, for Pr2Fe14B with 30 nm grains, coercivity was controlled by pinning of the nucle-ated domain.For Pr2Fe14B/α-Fe with 30vol.% α-Fe, the demagnetization behavior was characterized by continuous reversal of α-Fe moment. 展开更多
关键词 nanocrystalline permanent magnets COERCIVITY MICROMAGNETICS finite element method rare earths
下载PDF
Influence of dynamic crystallization on exchange-coupled NdFeB nanocrystalline permanent magnets 被引量:2
7
作者 ZHANG Ran LIU Ying MA Yilong ZHANG Longfeng XU Jianchuan GAO Shengji 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期596-601,共6页
Dynamic crystallization was introduced to improve the magnetic properties of NdFeB nanocrystalline permanent magnets by optimizing microstructure. The microstructure was studied by X-ray diffraction (XRD) and transmis... Dynamic crystallization was introduced to improve the magnetic properties of NdFeB nanocrystalline permanent magnets by optimizing microstructure. The microstructure was studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It has been determined that, compared with the conventional heat treatment, dynamic crystallization can shorten the crystallization time. Moreover, dynamic crystallization can refine grains, enhance the exchange-coupled interaction among grains, and promote the magnetic properties. As a result, the optimal magnetic properties of Nd10.5(FeCoZr)83.4B6.1 (Br=0.685 T, Hci=732 kA·m-1, Hcb=429 kA·m-1, (BH)m=75 kJ·m-3) are obtained after dynamic crystallization heat treatment at 700 ℃ for 10 min. 展开更多
关键词 dynamic crystallization nanocomposite permanent magnets magnetic properties microstructure
下载PDF
Application of high-temperature permanent magnets Sm(Co, Fe, Cu, Zr)_Z in PPM focusing system 被引量:2
8
作者 彭龙 杨青慧 +2 位作者 刘颖力 宋远强 张怀武 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第5期731-734,共4页
Rare earth permanent magnets Sm(Co, Fe, Cu, Zr)z with outstanding performance and high-temperature thermal stability were fabricated. Optimized by Fe content and process, Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5 magnet with... Rare earth permanent magnets Sm(Co, Fe, Cu, Zr)z with outstanding performance and high-temperature thermal stability were fabricated. Optimized by Fe content and process, Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5 magnet with B1〉0.75 T and Hci〉1300 kA/m at 300 ℃ can be obtained. According to the performance data of Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5, the magnetic field along central axis Bz in periodic permanent magnet (PPM) focusing system was simulated using electromagnetic field analysis software Maxwell 2D/3D. The Bz exhibited typical cosine curve along central axis, and the peak value of Bz was high enough to meet the demand of PPM focusing system at room temperature even at 200±20 ℃. Additionally, a kind of simple cooling structure for PPM focusing system was designed by setting cooling pipe between polepieces. Simulated results showed that smooth cosine curve of Bz was successfully achieved with good control of the thickness of cooling pipe. 展开更多
关键词 rare earth permanent magnets Sm(Co Fe Cu Zr)z PPM focusing system Maxwell 2D/3D magnetic field simulation
下载PDF
Antioxidation Study of Sm(Co, Cu, Fe, Zr)_z-Sintered Permanent Magnets by Metal Injection Molding 被引量:2
9
作者 张深根 田建军 +1 位作者 曲选辉 陶斯武 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期569-573,共5页
Antioxidation effects on Sm (Co, Cu, Fe, Zr)z-sintered magnets treated by different methods were studied through TGA and DTA. Microstructure of Sm(Co, Cu, Fe, Zr)z-sintered magnets was analyzed through SEM and EDS... Antioxidation effects on Sm (Co, Cu, Fe, Zr)z-sintered magnets treated by different methods were studied through TGA and DTA. Microstructure of Sm(Co, Cu, Fe, Zr)z-sintered magnets was analyzed through SEM and EDS. The results indicate that the antioxidation effect of the alloy powder treated in silane solution is better than that of the other methods. The alloy powders treated in stearic acid (SA) solution and polymethyl methacrylate (PMMA) solution can prevent powders from oxidation for a short period of time. Silane solution is not suitable for metal injection molding (MIM) because it severely damages the magnetic properties and microstructure of Sm(Co, Cu, Fe, Zr)z-sintered magnets. SA solution can not only prevent powders from oxidizing in MIM, but also does not damage magnetic properties and microstructure of Sm(Co, Cu, Fe, Zr)z magnets. The oxygen content of Sm(Co, Cu, Fe, Zr)z-sintered magnets by MIM is 3300μg·g^-1. 展开更多
关键词 metal injection molding Sm(Co Cu Fe Zr)z permanent magnets ANTIOXIDATION rare earths
下载PDF
Angular dependence of coercivity of grains in nanocrystalline permanent magnets 被引量:1
10
作者 龚依民 蓝志环 +8 位作者 闰羽 杜晓波 王文全 王学凤 苏峰 卢磊 张之胜 金汉民 温戈辉 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期1130-1134,共5页
In this paper magnetization remanence curves were studied for nanocrystalline Pr8Fe87B5, Pr12Fe82B6 and Pr15Fe77B8. Initially the sample was at remanence following saturation along z-axis. After rotating the magnet by... In this paper magnetization remanence curves were studied for nanocrystalline Pr8Fe87B5, Pr12Fe82B6 and Pr15Fe77B8. Initially the sample was at remanence following saturation along z-axis. After rotating the magnet by 5n degrees (n=0, 1, ..., 18) a field H was applied along z-axis and then decreased to zero, and the remanence Jr^n was measured as a function of H. The curves were compared with those calculated based on the nucleation of reverse domain model and domain wall pinning model. The latter model succeeds in simulation much better than the former, and it is concluded that the magnetization reversal is dominated by domain wall pinning for all the samples. The nucleation mechanism contribution, while remains small, increases with the increase of Pr content. 展开更多
关键词 NANOCRYSTALLINE permanent magnets magnetization curves computer simulation
下载PDF
A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock 被引量:3
11
作者 王强 林弋戈 +6 位作者 高坊林 李烨 林百科 孟飞 臧二军 李天初 方占军 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第10期22-25,共4页
We report a longitudinal Zeeman slower based on ring-shaped permanent magnetic dipoles used for the strontium optical lattice clock. The Zeeman slower is composed of 40 permanent magnets with the same outer diameter b... We report a longitudinal Zeeman slower based on ring-shaped permanent magnetic dipoles used for the strontium optical lattice clock. The Zeeman slower is composed of 40 permanent magnets with the same outer diameter but different inner diameters. The maximum variation of the axial field from its target values is less than 2%. In most parts of the Zeeman slower, the intensity variations of the field in radial spatial distribution are less than 0.1 roT. With this Zeeman slower, the strontium atoms are slowed down to 95m/s, and approximately 2% of the total atoms are slowed down to less than 50m/s. 展开更多
关键词 A Longitudinal Zeeman Slower Based on Ring-Shaped permanent magnets for a Strontium Optical Lattice Clock
下载PDF
^(57)Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE–Fe–B permanent magnets 被引量:1
12
作者 赵利忠 张雪峰 +2 位作者 严密 刘仲武 Jean-Marc Greneche 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期73-86,共14页
This review summarizes the recent advances on the application of ^(57)Fe Mössbauer spectrometry to study the magnetic and phase characteristics of Nd–Fe–B-based permanent magnets. First of all, the hyperfine st... This review summarizes the recent advances on the application of ^(57)Fe Mössbauer spectrometry to study the magnetic and phase characteristics of Nd–Fe–B-based permanent magnets. First of all, the hyperfine structures of the Ce_(2)Fe_(14)B,(Ce,Nd)_(2)Fe_(14)B and MM_(2)Fe_(14)B phases are well-defined by using the model based on the Wigner-Seitz analysis of the crystal structure. The results show that the isomer shift δ and the quadrupole splitting öEQ of those 2:14:1 phases show minor changes with the Nd content, while the hyperfine field Bhfincreases monotonically with increasing Nd content and its value is influenced by the element segregation and phase separation in the 2:14:1 phase. Then, the hyperfine structures of the low fraction secondary phases are determined by the ^(57)Fe Mössbauer spectrometry due to its high sensitivity. On this basis,the content, magnetic behavior, and magnetization of the REFe_(2) phase, the amorphous grain boundary(GB) phase, and the amorphous worm-like phase, as well as their effects on the magnetic properties, are systematically studied. 展开更多
关键词 ^(57)Fe Mössbauer spectrometry Nd–Fe–B-based permanent magnets (Ce Nd)_(2)Fe_(14)B phase grain boundary phase
下载PDF
Rare earth permanent magnets prepared by hot deformation process
13
作者 陈仁杰 王泽轩 +5 位作者 唐旭 尹文宗 靳朝相 剧锦云 李东 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期71-91,共21页
Hot deformation is one of the primary methods for fabricating anisotropic rare earth permanent magnets. Firstly,rapidly quenched powder flakes with a nanocrystal structure are condensed into fully dense isotropic prec... Hot deformation is one of the primary methods for fabricating anisotropic rare earth permanent magnets. Firstly,rapidly quenched powder flakes with a nanocrystal structure are condensed into fully dense isotropic precursors using the hot-pressing process. The prepared isotropic precursors are then hot-deformed to produce high-anisotropy uniaxial bulk rare earth permanent magnets and a highly textured structure is produced via this process. The resulting magnets possess many advantages such as near-net-shape, outstanding corrosion resistance, and ultrafine-grain structure. The influence of the preparation parameters utilized in the hot-pressing and deformation processes on the magnetic properties and microstructure of the permanent magnets are systemically summarized in this report. As a near-net-shape technique, the hot deformation process has notable advantages with regard to the production of irregular shapes, especially for radially oriented ringshaped magnets with high length-diameter ratios or thin walls. The difficulties associated with the fabrication of crack-free,homogeneous, and non-decentered ring-shaped magnets are substantially resolved through an emphasis on mold design,adjustment of deformation parameters, and application of theoretical simulation. Considering the characteristics of hotdeformed magnets which include grain shape and size, anisotropic distribution of intergranular phases, etc., investigation and improvement of the mechanical and electric properties, in addition to thermal stability, with the objective of improving the application of hot-deformed magnets or ring-shaped magnets, is of practical significance. 展开更多
关键词 hot deformation Nd-Fe-B permanent magnets high coercivity NANOCOMPOSITE radially oriented Nd-Fe-B ring magnet
下载PDF
Effect of Nd_2Fe_(14)B/α-Fe Nanocomposite Permanent Magnets with a Combined Co and Nb Additions
14
作者 马瑞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第5期725-727,共3页
Influence of Co+Nb on the Nd8Fe82Co3Nb1B6 nanocomposite magnets was investigated by adding Co element combined with Nb element. Results show that the high temperature stability of two phases is increased. Adding Co+... Influence of Co+Nb on the Nd8Fe82Co3Nb1B6 nanocomposite magnets was investigated by adding Co element combined with Nb element. Results show that the high temperature stability of two phases is increased. Adding Co+Nb could improve the glass forming ability of the alloy, reduce the size of grains, increase the exchange coupling ability of two phases, and obviously increase the magnetic properties of the alloy. The optimal magnetic properties are Br=1.14 T, Hcj=320 kA/m, (BH)max=109.3 kJ/m^3 展开更多
关键词 nanocomposite permanent magnets glass forming ability exchange coupling ability magnetic properties
下载PDF
Encouraging Chinese High Performance Permanent Magnets Market Potentials
15
《China Rare Earth Information》 2003年第2期2-3,共2页
关键词 HIGH Encouraging Chinese High Performance permanent magnets Market Potentials IS for of
下载PDF
ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS 被引量:4
16
作者 苟晓凡 杨勇 郑晓静 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第3期297-306,共10页
From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart'... From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk,but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore,the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field. 展开更多
关键词 permanent magnet magnetic field distribution analytic expression
下载PDF
Mn-based permanent magnets
17
作者 杨金波 杨文云 +4 位作者 邵珠印 梁栋 赵辉 夏元华 杨云波 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期55-70,共16页
Mn-based intermetallic compounds have attracted much attention due to their fascinating structural and physical properties, especially their interesting hard magnetic properties. In this paper, we have summarized the ... Mn-based intermetallic compounds have attracted much attention due to their fascinating structural and physical properties, especially their interesting hard magnetic properties. In this paper, we have summarized the magnetic and structural properties of Mn-based intermetallic compounds(Mn X, where X = Al, Bi, and Ga). Various methods for synthesizing single phases of MnAl, MnBi, and Mnx Ga were developed in our lab. A very high saturation magnetization of 125 emu/g,coercivity of 5 kOe, and maximum energy product(BH)max of 3.1 MG·Oe were achieved at room temperature for the pure τ-Mn–Al magnetic phase without carbon doping and the extrusion process. Low temperature phase(LTP) MnBi with a purity above 95 wt.% can be synthesized. An abnormal temperature coefficient of the coercivity was observed for the LTP MnBi magnet. Its coercivity increased with temperature from 100 K to 540 K, reached a maximum of 2.5 T at about540 K, and then decreased slowly to 1.8 T at 610 K. The positive temperature coefficient of the coercivity is related to the evolution of the structure and magnetocrystalline anisotropy field of the LTP MnBi phase with temperature. The LTP MnBi bonded magnets show maximum energy products(BH)max of 8.9 MG·Oe(70 kJ/m^3) and 5.0 MG·Oe(40 k J/m^3) at room temperature and 400 K, respectively. Ferrimagnetic Mnx Ga phases with L10 structures(x 〈 2.0) and D022 structures(x 〉 2.0) were obtained. All of the above structures can be described by a D0(22) supercell model in which 2 a-Ga and 2 b-Mn are simultaneously substituted. The tetragonal D0(22) phases of the Mnx Ga show high coercivities ranging from 7.2 kOe for low Mn content x = 1.8 to 18.2 kOe for high Mn content x = 3 at room temperature. The Mn(1.2) Ga sample exhibits a room temperature magnetization value of 80 emu/g. The hard magnetic properties of coercivityiHc = 3.5 kOe, remanence Mr = 43.6 emu/g, and(BH)max = 2.5 MG·Oe were obtained at room temperature. Based on the above studies, we believe that Mn-based magnetic materials could be promising candidates for rare earth free permanent magnets exhibiting a high Curie temperature, high magnetocrystalline anisotropy, and very high coercivity. 展开更多
关键词 permanent magnetic materials magnetic properties manganese alloys magnetic structure COERCIVITY MAGNETIZATION neutron diffraction
下载PDF
The Stability of Rare Earth-Iron-Nitrides Sm_2(Fe,M)_(17)N_y,Permanent Magnets
18
作者 杨俊 周寿增 +3 位作者 张茂才 马德青 李佛标 王润 《Journal of Rare Earths》 SCIE EI CAS CSCD 1993年第1期69-71,共3页
The effects of the partial substitution of element M(M=Cr,V,Mn,x=0.05;Zr,Ga,x=0.017; Si,x=0.15;Co,x=0.10)for Fe in samarium-iron-nitride Sm_2(Fe_(1-x)M_x)_(17)N_y compounds on their stabilities and Curie temperatures ... The effects of the partial substitution of element M(M=Cr,V,Mn,x=0.05;Zr,Ga,x=0.017; Si,x=0.15;Co,x=0.10)for Fe in samarium-iron-nitride Sm_2(Fe_(1-x)M_x)_(17)N_y compounds on their stabilities and Curie temperatures have been studied.It is found that Co,Ga can raise the Curie temperature of the compounds.The initial decomposition temperatures cannot be raised significantly by all the studied elements except Co.The result contradicts the formation enthalpy consideration.The final decomposition tempera- tures can be raised by all of the substitution elements.The effects of atmospheres on their decomposition be- havior were also studied.The results show that oxidation is the major reason for magnetic deterioration of the powder heated in air.Compared with nitrogen atmosphere,argon or vacuum helps to delay the decompo- sition of the compounds. 展开更多
关键词 Rare earth-iron-nitride permanent magnet Stability
下载PDF
Three-dimensional Analytical Modeling of Axial Flux Permanent Magnets Maglev Motor
19
作者 Wei Qin Gang Lv Yuhua Ma 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第4期438-444,共7页
The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic charact... The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic characteristics.Firstly,the topology and working principle of the AFPMMM is introduced,and the model is transferred into a mathematical model in 3D cartesian coordinate.Then,the volume integral method and equivalent current sheets model is applied to find the 3D magnetic field distribution function of Halbach rotor.A unified form expression can be obtained by two dimensional discrete fourier transform(2-D DFT)is applied on the 3D magnetic field distribution function.Thirdly,the conductive and nonconductive regions of AFPMMM will be formulated by the second order vector potential(SOVP)to built the 3D analytic model.The expression of the lift force,torque and power losses was derived.Besides,the relationship between electromagnetic characteristics and structural parameters of the AFPMMM were analyzed based on 3D analytic model and validated using the 3D finite element analysis(FEA).Finally,the experiments based on a small scale prototype are carried out to verify the analytical results. 展开更多
关键词 Axial flux permanent magnet machines MAGLEV Analytical model Electromagnetic performance
下载PDF
Analysis and Modeling of Tooth-Tip Leakage Fluxes in a Radial-Flux Dual-Stator Machine with Diametrically Magnetized Cylindrical Permanent Magnets
20
作者 Nejat Saed Shahin Asgari Mojtaba Mirasalim 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第4期382-388,共7页
Tooth-tip Leakage flux(TLF)has a major effect on the prediction of air-gap flux distribution and electromagnetic torque in the permanent magnet(PM)machines.Therefore,deriving a model for TLF is necessary for machine d... Tooth-tip Leakage flux(TLF)has a major effect on the prediction of air-gap flux distribution and electromagnetic torque in the permanent magnet(PM)machines.Therefore,deriving a model for TLF is necessary for machine design and optimization.Accurate modeling of TLF can lead to fast and precise solutions,which ease the analysis of electromagnetic devices.It also provides the opportunity to increase torque density by more efficient utilization of PM’s volume and prevent saturation in machine optimization.This paper presents a method for modeling and analyzing TLFs in a radial-flux dual-stator permanent magnet(DSPM)machine with diametrically magnetized cylindrical permanent magnets(DMCPM)in series and parallel magnetic circuit structures.In this model,some expressions in terms of machine dimensions are derived for the TLF analysis.Finite element method(FEM)is applied to validate the proposed model.Results indicate that the maximum error between the proposed model and FEM is insignificant(less than 6%).Finally,by a prototyped machine the validity of the proposed model was investigated with the experimental tests. 展开更多
关键词 Dual-stator permanent magnet(DSPM)machine diametrically magnetized cylindrical permanent magnet(DMCPM) tooth-tip leakage fluxes(TLFs).
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部