This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The ob...The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework. A simulation example is presented to demonstrate the validity and efficiency of the design.展开更多
The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast ...The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast subsystem without time-delay and a slow time-delay subsystem with disturbances.Theoptimal disturbances rejection control law of the slow subsystem is obtained by using the successive ap-proximation approach(SAA)and feedforward compensation method.Further,the feedforward and feed-back composite control(FFCC)law for the original problem is developed.The FFCC law consists of lin-ear analytic terms and a time-delay compensation term which is the limit of the solution sequence of theadjoint vector equations.A disturbance observer is introduced to make the FFCC law physically realiz-able.Numerical examples show that the proposed algorithm is effective.展开更多
Studying quantum properties of a system has been quite popular in quantum mechanics. One of the most important systems that are very crucial to the framework of quantum mechanics is the system of harmonic oscillator a...Studying quantum properties of a system has been quite popular in quantum mechanics. One of the most important systems that are very crucial to the framework of quantum mechanics is the system of harmonic oscillator a system whose classical evolution is known to exhibit peculiar chaotic dynamics. We are motivated to investigate the behavior of quantum properties for a system with position and time dependent perturbed. Starting with Hamiltonian, we determined the equation of motion and obtained the wave function. The energy of the whole system using the operator ordering method was found. We show that the quantum mechanical picture alludes to a chaotic dynamics as expected. This is evidenced through the appearance of energy level crossings. An additional signature to this chaotic dynamics is observed in the transition of Eigen values from real to imaginary. We also show numerically that one can give the behavior of the system is Poincare section. By so doing we confirmed that increasing and decreasing the perturbation amplitude of the system becomes chaotic.展开更多
Dear Editor, This letter investigates the prescribed-time stabilization of linear singularly perturbed systems. Due to the numerical issues caused by the small perturbation parameter, the off-the-shelf control design ...Dear Editor, This letter investigates the prescribed-time stabilization of linear singularly perturbed systems. Due to the numerical issues caused by the small perturbation parameter, the off-the-shelf control design techniques for the prescribed-time stabilization of regular linear systems are typically not suitable here. To solve the problem, the decoupling transformation techniques for time-varying singularly perturbed systems are combined with linear time-varying high gain feedback design techniques.展开更多
This paper studies delay dependent robust stability and the stabilization problem of nonlinear perturbed systems with time varying delay. A new set of sufficient conditions for the stability of open as well as close l...This paper studies delay dependent robust stability and the stabilization problem of nonlinear perturbed systems with time varying delay. A new set of sufficient conditions for the stability of open as well as close loop systems are obtained in the sense of Lyapunov-Krasovskii. To reduce the conservatism, the work exploits the idea of splitting the delay interval into multiple equal regions so that less information on the time delay can be imposed to derive the results. The derived criterion not only improves the upper bounds of the time delay but also does not require the derivative of the delay to be known at prior. Easily testable sufficient criteria are presented in terms of linear matrix inequalities. It is shown that the derived conditions are very less conservative while comparing the maximum allowable upper bound of delay with the existing results in literature.展开更多
In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to pr...In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.展开更多
The additive fault tolerant control (FTC) for delayed system is studied in this work. To design the additive control, two steps are necessary;the first one is the estimation of the sensor fault amplitude using a Luenb...The additive fault tolerant control (FTC) for delayed system is studied in this work. To design the additive control, two steps are necessary;the first one is the estimation of the sensor fault amplitude using a Luenberger observer with delay, and the second one consists to generate the additive fault tolerant control law and to add it to the nominal control of delayed system. The additive control law must be in function of fault term, then, in the absence of fault the expression of additive control equal to zero. The generation of nominal control law consist to determinate the state feedback gain by using the Lambert W method. Around all these control tools, we propose an extension of the additive FTC to delayed singularly perturbed systems (SPS). So, this extension consists to decompose the delayed SPS in two parts: delayed slow subsystem (delayed SS) and fast subsystem (FS) without time delay. Next, we consider that the delayed SPS is affected at its steady-state, and we apply the principal of FTC to the delayed SS and finally we combine them with the feedback gain control of FS by using the principal of composite control.展开更多
Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain l...Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain linear matrix equations are solvable. Once these equations are solvable, the state feedback regulator can easily be constructed.展开更多
The asymptotic behavior of solution for a n-dimensional nonlinear singularly perturbed system is studied. Under the appropriate assumptions, the existence of solution for the system is proved and the estimation of the...The asymptotic behavior of solution for a n-dimensional nonlinear singularly perturbed system is studied. Under the appropriate assumptions, the existence of solution for the system is proved and the estimation of the solution is given using the method of differential inequalities.展开更多
This paper is concerned with the numerical solution for singular perturbation system of two coupled second ordinary differential equations with initial and boundary conditions, respectively. Fitted finite difference s...This paper is concerned with the numerical solution for singular perturbation system of two coupled second ordinary differential equations with initial and boundary conditions, respectively. Fitted finite difference scheme on a uniform mesh, whose solution converges pointwise independently of the singular perturbation parameter is constructed and analyzed.展开更多
In order to deal with unmodeled dynamics in large vehicle systems, which have an ill condition of the state matrix, the use of model order reduction methods is a good approach. This article presents a new construction...In order to deal with unmodeled dynamics in large vehicle systems, which have an ill condition of the state matrix, the use of model order reduction methods is a good approach. This article presents a new construction of the sliding mode controller for singularly perturbed systems. The controller design is based on a linear diagonal transformation of the singularly perturbed model. Furthermore, the use of a single sliding mode controller designed for the slow component of the diagonalized system is investigated. Simulation results indicate the performance improvement of the proposed controllers.展开更多
This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. Fi...This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. First, the full order system will be controlled using v-dependent control law. The corresponding Lyapunov equation is ill-conditioned due to the presence of slow and fast phenomena. Secondly, a time-scale decomposition of the Lyapunov equation is carried out using singular perturbation method to avoid the numerical stiffness. A composite control law based on local controllers of the slow and fast subsystems is also used to make the control law ε-independent. The designed fault tolerant control guarantees the robust stability of the global closed-loop singularly perturbed system despite loss of effectiveness of actuators. The stability is proved based on the Lyapunov stability theory in the case where the singular perturbation parameter is sufficiently small. A numerical example is provided to illustrate the proposed method.展开更多
This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feed...This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feedback linearization only of a certain part of the original nonlinear system.According to AFL approach,we suggest to solve feedback linearization problems for continuous nonlinear SP system by reducing it to two feedback linearization problems for slow and fast subsystems separately.The resulting AFL control is constructed in the form of asymptotic composition(composite control).Standard procedure for the composite control design consists of the following steps:1)system decomposition,2)solution of control problem for fast subsystem,3)solution of control problem for slow subsystem,4)construction of the resulting control in the form of the composition of slow and fast controls.The main difficulty during system decomposition is associated with dynamics separation condition for nonlinear SP system.To overcome this,we propose to change the sequence of the design procedure:1)solving the control problem for fast state variables part,2)system decomposition,3)solving the control problem for slow state variables part,4)construction of the resulting composite control.By this way,fast feedback linearizing control is chosen so that the dynamics separation condition would be met and the fast subsystem would be stabilizable.The application of the proposed approach is illustrated through several examples.展开更多
Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditi...Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.展开更多
In this paper, we obtain 'Roughness' theorems for h-stability of the nonlinear perturbed systems using the comparison method and some integral inequalities.
The time-periodic perturbations of planar Hamiltonian systems are investigated.A necessary condition for the existence of an invariant torus,a sufficient condition for the bifurcation of a unique invariant torus and a...The time-periodic perturbations of planar Hamiltonian systems are investigated.A necessary condition for the existence of an invariant torus,a sufficient condition for the bifurcation of a unique invariant torus and a subharmonic solution are obtained.展开更多
The solvability for a class of singularly perturbed Robin problem of quasilinear differential system is considered. Using the boundary layer corrective method the formal asymptotic solution is constructed. And using t...The solvability for a class of singularly perturbed Robin problem of quasilinear differential system is considered. Using the boundary layer corrective method the formal asymptotic solution is constructed. And using the theory of differential inequality the uniform validity of the asymptotic expansions for solution is proved.展开更多
In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Unsing the iteration method and the comparison theorem, the existence, uniqueness and i...In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Unsing the iteration method and the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.展开更多
A class of nonlinear predator prey reaction diffusion systems for singularly pe rturbed problems are considered.Under suitable conditions, by using theory of di fferential inequalities the existence and asymptotic be...A class of nonlinear predator prey reaction diffusion systems for singularly pe rturbed problems are considered.Under suitable conditions, by using theory of di fferential inequalities the existence and asymptotic behavior of solution for in itial boundary value problems are studied.展开更多
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.
基金This work was supported by the National Natural Science Foundation of China (No. 60474078,60304001).
文摘The state feedback design for singularly perturbed systems described in Delta operator is considered. The composite state feedback controller for slow and fast subsystems is designed by using the direct method. The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework. A simulation example is presented to demonstrate the validity and efficiency of the design.
基金the National Natural Science Foundation of China(No.60574023,40776051)the Natural Science Foundation of Zhejiang Province(No.Y107232)+1 种基金the Scientific Research Found of Zhejiang Provincial Education Department(No.Y200702660)the 123 Talent Funding Project of China Jiliang University(No.2006RC17)
文摘The optimal control design for singularly perturbed time-delay systems affected by external distur-bances is considered.Based on the decomposition theory of singular perturbation,the system is decom-posed into a fast subsystem without time-delay and a slow time-delay subsystem with disturbances.Theoptimal disturbances rejection control law of the slow subsystem is obtained by using the successive ap-proximation approach(SAA)and feedforward compensation method.Further,the feedforward and feed-back composite control(FFCC)law for the original problem is developed.The FFCC law consists of lin-ear analytic terms and a time-delay compensation term which is the limit of the solution sequence of theadjoint vector equations.A disturbance observer is introduced to make the FFCC law physically realiz-able.Numerical examples show that the proposed algorithm is effective.
文摘Studying quantum properties of a system has been quite popular in quantum mechanics. One of the most important systems that are very crucial to the framework of quantum mechanics is the system of harmonic oscillator a system whose classical evolution is known to exhibit peculiar chaotic dynamics. We are motivated to investigate the behavior of quantum properties for a system with position and time dependent perturbed. Starting with Hamiltonian, we determined the equation of motion and obtained the wave function. The energy of the whole system using the operator ordering method was found. We show that the quantum mechanical picture alludes to a chaotic dynamics as expected. This is evidenced through the appearance of energy level crossings. An additional signature to this chaotic dynamics is observed in the transition of Eigen values from real to imaginary. We also show numerically that one can give the behavior of the system is Poincare section. By so doing we confirmed that increasing and decreasing the perturbation amplitude of the system becomes chaotic.
基金supported by the National Natural Science Foundation of China(62173152,62103156,62233006)the Natural Science Foundation of Hubei Province of China(2021CFB052)the China Postdoctoral Science Foundation(2022M721249)。
文摘Dear Editor, This letter investigates the prescribed-time stabilization of linear singularly perturbed systems. Due to the numerical issues caused by the small perturbation parameter, the off-the-shelf control design techniques for the prescribed-time stabilization of regular linear systems are typically not suitable here. To solve the problem, the decoupling transformation techniques for time-varying singularly perturbed systems are combined with linear time-varying high gain feedback design techniques.
文摘This paper studies delay dependent robust stability and the stabilization problem of nonlinear perturbed systems with time varying delay. A new set of sufficient conditions for the stability of open as well as close loop systems are obtained in the sense of Lyapunov-Krasovskii. To reduce the conservatism, the work exploits the idea of splitting the delay interval into multiple equal regions so that less information on the time delay can be imposed to derive the results. The derived criterion not only improves the upper bounds of the time delay but also does not require the derivative of the delay to be known at prior. Easily testable sufficient criteria are presented in terms of linear matrix inequalities. It is shown that the derived conditions are very less conservative while comparing the maximum allowable upper bound of delay with the existing results in literature.
基金the National Natural Science Foundation of China (No. 10671069, 60674046)
文摘In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.
文摘The additive fault tolerant control (FTC) for delayed system is studied in this work. To design the additive control, two steps are necessary;the first one is the estimation of the sensor fault amplitude using a Luenberger observer with delay, and the second one consists to generate the additive fault tolerant control law and to add it to the nominal control of delayed system. The additive control law must be in function of fault term, then, in the absence of fault the expression of additive control equal to zero. The generation of nominal control law consist to determinate the state feedback gain by using the Lambert W method. Around all these control tools, we propose an extension of the additive FTC to delayed singularly perturbed systems (SPS). So, this extension consists to decompose the delayed SPS in two parts: delayed slow subsystem (delayed SS) and fast subsystem (FS) without time delay. Next, we consider that the delayed SPS is affected at its steady-state, and we apply the principal of FTC to the delayed SS and finally we combine them with the feedback gain control of FS by using the principal of composite control.
文摘Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain linear matrix equations are solvable. Once these equations are solvable, the state feedback regulator can easily be constructed.
基金Supported by the National Natural Science Foundation(10471039)Supported by the Natural Science Foundation of Zhejiang Province(102009)
文摘The asymptotic behavior of solution for a n-dimensional nonlinear singularly perturbed system is studied. Under the appropriate assumptions, the existence of solution for the system is proved and the estimation of the solution is given using the method of differential inequalities.
文摘This paper is concerned with the numerical solution for singular perturbation system of two coupled second ordinary differential equations with initial and boundary conditions, respectively. Fitted finite difference scheme on a uniform mesh, whose solution converges pointwise independently of the singular perturbation parameter is constructed and analyzed.
文摘In order to deal with unmodeled dynamics in large vehicle systems, which have an ill condition of the state matrix, the use of model order reduction methods is a good approach. This article presents a new construction of the sliding mode controller for singularly perturbed systems. The controller design is based on a linear diagonal transformation of the singularly perturbed model. Furthermore, the use of a single sliding mode controller designed for the slow component of the diagonalized system is investigated. Simulation results indicate the performance improvement of the proposed controllers.
文摘This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. First, the full order system will be controlled using v-dependent control law. The corresponding Lyapunov equation is ill-conditioned due to the presence of slow and fast phenomena. Secondly, a time-scale decomposition of the Lyapunov equation is carried out using singular perturbation method to avoid the numerical stiffness. A composite control law based on local controllers of the slow and fast subsystems is also used to make the control law ε-independent. The designed fault tolerant control guarantees the robust stability of the global closed-loop singularly perturbed system despite loss of effectiveness of actuators. The stability is proved based on the Lyapunov stability theory in the case where the singular perturbation parameter is sufficiently small. A numerical example is provided to illustrate the proposed method.
基金supported by Russian Foundation for Basic Research(No.15-08-06859a)and by the Ministry of Education and Science of the Russian Federation in the framework of the basic part of the state order(No.2.8629.2017).
文摘This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed(SP)system using approximate feedback linearization(AFL)method.The essence of AFL method lies in the feedback linearization only of a certain part of the original nonlinear system.According to AFL approach,we suggest to solve feedback linearization problems for continuous nonlinear SP system by reducing it to two feedback linearization problems for slow and fast subsystems separately.The resulting AFL control is constructed in the form of asymptotic composition(composite control).Standard procedure for the composite control design consists of the following steps:1)system decomposition,2)solution of control problem for fast subsystem,3)solution of control problem for slow subsystem,4)construction of the resulting control in the form of the composition of slow and fast controls.The main difficulty during system decomposition is associated with dynamics separation condition for nonlinear SP system.To overcome this,we propose to change the sequence of the design procedure:1)solving the control problem for fast state variables part,2)system decomposition,3)solving the control problem for slow state variables part,4)construction of the resulting composite control.By this way,fast feedback linearizing control is chosen so that the dynamics separation condition would be met and the fast subsystem would be stabilizable.The application of the proposed approach is illustrated through several examples.
基金This project was supported by the National Natural Science Foundation of China (60574023), the Natural Science Foundation of Shandong Province (Z2005G01), and the Natural Science Foundation of Qingdao City (05-1-JC-94).
文摘Optimal deterministic disturbances rejection control problem for singularly perturbed linear systems is considered. By using the slow-fast decomposition theory of singular perturbation, the existent and unique conditions of the feedforward and feedback composite control (FFCC) laws for both infinite-time and finite-time are proposed, and the design approaches are given. A disturbance observer is introduced to make the FFCC laws realizable physically. Simulation results indicate that the FFCC laws are robust with respect to external disturbances.
文摘In this paper, we obtain 'Roughness' theorems for h-stability of the nonlinear perturbed systems using the comparison method and some integral inequalities.
基金Progect supported by the National Natural Science Foundation of China.
文摘The time-periodic perturbations of planar Hamiltonian systems are investigated.A necessary condition for the existence of an invariant torus,a sufficient condition for the bifurcation of a unique invariant torus and a subharmonic solution are obtained.
基金the NNSF of China(40676016 and 10471039)the National Key Project for Basic Research(2003CB415101-03 and 2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)part by E-Institutes of Shanghai Municipal Education Commission(E03004)
文摘The solvability for a class of singularly perturbed Robin problem of quasilinear differential system is considered. Using the boundary layer corrective method the formal asymptotic solution is constructed. And using the theory of differential inequality the uniform validity of the asymptotic expansions for solution is proved.
基金The project is supported by The National Natural Science Foundation of China(10071048)"Hundred People Project" of Chinese Academy of Sciences
文摘In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Unsing the iteration method and the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.
基金Supported by important study project of the National Natural Science Foundation of China(9 0 2 1 1 0 0 4 ) and by the"Hundred Talents'Project"of Chinese Academy of Sciences
文摘A class of nonlinear predator prey reaction diffusion systems for singularly pe rturbed problems are considered.Under suitable conditions, by using theory of di fferential inequalities the existence and asymptotic behavior of solution for in itial boundary value problems are studied.