Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury ...Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.展开更多
BACKGROUND Patatin like phospholipase domain containing 8(PNPLA8)has been shown to play a significant role in various cancer entities.Previous studies have focused on its roles as an antioxidant and in lipid peroxidat...BACKGROUND Patatin like phospholipase domain containing 8(PNPLA8)has been shown to play a significant role in various cancer entities.Previous studies have focused on its roles as an antioxidant and in lipid peroxidation.However,the role of PNPLA8 in colorectal cancer(CRC)progression is unclear.AIM To explore the prognostic effects of PNPLA8 expression in CRC.METHODS A retrospective cohort containing 751 consecutive CRC patients was enrolled.PNPLA8 expression in tumor samples was evaluated by immunohistochemistry staining and semi-quantitated with immunoreactive scores.CRC patients were divided into high and low PNPLA8 expression groups based on the cut-off va-lues,which were calculated by X-tile software.The prognostic value of PNPLA8 was identified using univariate and multivariate Cox regression analysis.The over-all survival(OS)rates of CRC patients in the study cohort were compared with Kaplan-Meier analysis and Log-rank test.RESULTS PNPLA8 expression was significantly associated with distant metastases in our cohort(P=0.048).CRC patients with high PNPLA8 expression indicated poor OS(median OS=35.3,P=0.005).CRC patients with a higher PNPLA8 expression at either stage I and II or stage III and IV had statistically significant shorter OS.For patients with left-sided colon and rectal cancer,the survival curves of two PN-PLA8-expression groups showed statistically significant differences.Multivariate analysis also confirmed that high PNPLA8 expression was an independent prog-nostic factor for overall survival(hazard ratio HR=1.328,95%CI:1.016-1.734,P=0.038).展开更多
In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussiv...In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussive Chinese herbal Siraitia grosvenori.The study elucidated the anti-inflammatory action and molecular mechanism of M2E against acute lung injury(ALI).A lipopolysaccharide(LPS)-induced ALI model was established in mice and MH-S cells were employed to explore the protective mechanism of M2E through the western blotting,co-immunoprecipitation,and quantitative real time-PCR analysis.The results indicated that M2E alleviated LPS-induced lung injury through restraining the activation of secreted phospholipase A2 type IIA(Pla2g2a)-epidermal growth factor receptor(EGFR).The interaction of Pla2g2a and EGFR was identified by co-immunoprecipitation.In addition,M2E protected ALI induced with LPS against inflammatory and damage which were significantly dependent upon the downregulation of AKT and m TOR via the inhibition of Pla2g2a-EGFR.Pla2g2a may represent a potential target for M2E in the improvement of LPS-induced lung injury,which may represent a promising strategy to treat ALI.展开更多
Chagas disease (CD) affects 21 countries in the Americas and is caused by the parasite Trypanosoma cruzi. A key molecule involved in CD is lysophosphatidylcholine (LPC), which has been studied in various contexts: in ...Chagas disease (CD) affects 21 countries in the Americas and is caused by the parasite Trypanosoma cruzi. A key molecule involved in CD is lysophosphatidylcholine (LPC), which has been studied in various contexts: in the saliva of insect vectors, during the establishment of infection in the vertebrate host, and for the parasite itself. This lipid can be produced by the action of phospholipases A2 (PLA2), enzymes that catalyze the hydrolysis of phospholipids releasing fatty acids and lysophospholipids, such as LPC. This study investigates LPC levels and PLA2 activities in the plasma of CD patients and compares these levels with those in healthy individuals and patients with idiopathic dilated cardiomyopathy (IDCM). Plasma from 64 CD patients, 54 healthy individuals, and 16 IDCM patients were analyzed. LPC levels and the activity of two types of phospholipase A2: secreted (sPLA2) and lipoprotein-associated (Lp-PLA2) were measured. LPC levels and sPLA2 activity were similar between CD patients and the control groups. However, there were notable differences in LPC levels and sPLA2 activity between subgroups of CD patients and IDCM patients. This study is the first to identify LPC in patients with CD across various stages of the disease. It also offers new insights into the biochemical changes observed in the plasma of patients with IDCM.展开更多
BACKGROUND Genetic factors of chronic intestinal ulcers are increasingly garnering attention.We present a case of chronic intestinal ulcers and bleeding associated with mu-tations of the activin A receptor type II-lik...BACKGROUND Genetic factors of chronic intestinal ulcers are increasingly garnering attention.We present a case of chronic intestinal ulcers and bleeding associated with mu-tations of the activin A receptor type II-like 1(ACVRL1)and phospholipase A2 group IVA(PLA2G4A)genes and review the available relevant literature.CASE SUMMARY A 20-year-old man was admitted to our center with a 6-year history of recurrent abdominal pain,diarrhea,and dark stools.At the onset 6 years ago,the patient had received treatment at a local hospital for abdominal pain persisting for 7 d,under the diagnosis of diffuse peritonitis,acute gangrenous appendicitis with perforation,adhesive intestinal obstruction,and pelvic abscess.The surgical treat-ment included exploratory laparotomy,appendectomy,intestinal adhesiolysis,and pelvic abscess removal.The patient’s condition improved and he was dis-charged.However,the recurrent episodes of abdominal pain and passage of black stools started again one year after discharge.On the basis of these features and results of subsequent colonoscopy,the clinical diagnosis was established as in-flammatory bowel disease(IBD).Accordingly,aminosalicylic acid,immunotherapy,and related symptomatic treatment were administered,but the symptoms of the patient did not improve significantly.Further investigations revealed mutations in the ACVRL1 and PLA2G4A genes.ACVRL1 and PLA2G4A are involved in angiogenesis and coagulation,respectively.This suggests that the chronic intestinal ulcers and bleeding in this case may be linked to mutations in the ACVRL1 and PLA2G4A genes.Oral Kangfuxin liquid was administered to promote healing of the intestinal mucosa and effectively manage clinical symptoms.CONCLUSION Mutations in the ACVRL1 and PLA2G4A genes may be one of the causes of chronic intestinal ulcers and bleeding in IBD.Orally administered Kangfuxin liquid may have therapeutic potential.展开更多
Phospholipase A2 (PLA2) is the key enzyme to the venom from Deinagkistrodon acutus which is one of the highly venomous snakes in China. In addition to being a catalyst for the hydrolysis of phospholipases A2 from snak...Phospholipase A2 (PLA2) is the key enzyme to the venom from Deinagkistrodon acutus which is one of the highly venomous snakes in China. In addition to being a catalyst for the hydrolysis of phospholipases A2 from snake venom, its well known that it possesses a broad spectrum of pharmacological activities, such as myotoxicity, neurotoxicity, cardiotoxicity, and hemolytic, anticoagulant and antiplatelet activities. However, snakebites are not efficiently treated by conventional serum therapy. Acute wounds can still cause poisoning and death. In order to find effective inhibitors of Deinagkistrodon venom acid phospholipase A2 (dPLA2), we obtained 385 compounds in 9 Chinese herbs from the TCMSP. These compounds were further performed to virtual screen using in silico tools like ADMET analysis, molecular docking and molecular dynamics (MD) simulation. After Pharmacokinetics analysis, we found 7 candidate compounds. Besides, analysis of small molecule interactions with dPLA2 confirmed that the amino acid residues HIS47 and GLY29 are key targets. Because they bind not only to the natural substrate phosphatidylcholine and compounds known for having inhibitory functions, but also for combining with potential antidote molecules in Chinese herbal medicine. This study is the first to report experience with virtual screening for possible inhibitor of dPLA2, such as the interaction spatial structure, binding energy and binding interaction analysis, these experiences not only provide reference for further experimental research, but also have a guideline for the study of drug molecular mechanism of action.展开更多
Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal tra...Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated PNPc3:GUS and PNPc4:GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. PNPc4:GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 I^M BL BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 I^M BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.展开更多
Salt and drought stress are common abiotic factors that exert a detrimental influence on seed germination,potentially leading to significantly impaired growth and production in rice.Gaining a comprehensive understandi...Salt and drought stress are common abiotic factors that exert a detrimental influence on seed germination,potentially leading to significantly impaired growth and production in rice.Gaining a comprehensive understanding of the molecular response of seeds to abiotic stress during the germination is of paramount importance.In the present study,we identified two R3-MYB genes in rice,namely OsTCL1 and OsTCL2,and characterized their roles in regulating seed germination under salt and drought stress.Plants with tcl1 and tcl2 mutant alleles exhibited delayed seed germination,particularly under stress conditions.The tcl1 tcl2 double mutant showed an even more pronounced reduction in germination during initial stages of germination,thereby indicating a redundant regulatory function of OsTCL1 and OsTCL2 in seed germination under abiotic stresses.Furthermore,we demonstrated that the transcript levels of several phospholipase D(PLD)genes were downregulated in the tcl1 tcl2 mutant,resulting in a decreased level of the phosphatidic acid(PA)product.Application of 1-butanol,a competitive substrate inhibitor of PLD-dependent production of PA,attenuated the stress response of the tcl1 tcl2 mutant.This suggests that OsTCL1 and OsTCL2 partially modulate seed germination through the PLD-PA signaling pathway.Moreover,there were alterations in the expression of genes involved in abscisic acid(ABA)biosynthesis,metabolism and signaling transduction in the double mutant.These changes affected the endogenous ABA level and ABA response,thereby influencing seed germination.Application of both 1-butanol and ABA synthesis inhibitor sodium tungstate(Na2WO4)nearly eliminated the differences in stress response between wild type and the tcl1 tcl2 mutant.This indicates that OsTCL1 and OsTCL2 synergistically coordinate seed germination under abiotic stresses through both the PLD-PA signaling and ABA-mediated pathways.展开更多
Central nervous system(CNS)trauma,including traumatic brain injury and spinal cord injury,has a high rate of disability and mortality,and effective treatment is currently lacking.Previous studies have revealed that ne...Central nervous system(CNS)trauma,including traumatic brain injury and spinal cord injury,has a high rate of disability and mortality,and effective treatment is currently lacking.Previous studies have revealed that neural inflammation plays a vital role in CNS trauma.As the initial enzyme in neuroinflammation,cytosolic phospholipase A_(2)(cPLA2)can hydrolyze membranous phosphatides at the sn-2 position in a preferential way to release lysophospholipids andω3-polyunsaturated fatty acid dominated by arachidonic acid,thereby inducing secondary injuries.Although there is substantial fresh knowledge pertaining to cPLA2,in-depth comprehension of how cPLA2 participates in CNS trauma and the potential methods to amelio rate the clinical res ults after CNS trauma are still insufficient.The present review summarizes the latest understanding of how cPLA2 participates in CNS trauma,highlighting novel findings pertaining to how cPLA2 activation initiates the potential mechanisms specifically,neuroinflammation,lysosome membrane functions,and autophagy activity,that damage the CNS after trauma.Moreover,we focused on testing a variety of drugs capable of inhibiting cPLA2 or the upstream pathway,and we explored how those agents might be utilized as treatments to improve the results following CNS trauma.This review aimed to effectively understand the mechanism of cPLA2 activation and its role in the pathophysiological processes of CNS trauma and provide clarification and a new referential framework for future research.展开更多
Objective:Pancreatic ductal adenocarcinoma(PDAC)is a highly malignant gastrointestinal cancer with a 5-year survival rate of only 9%.Of PDAC patients,15%-20%are eligible for radical surgery.Gemcitabine is an important...Objective:Pancreatic ductal adenocarcinoma(PDAC)is a highly malignant gastrointestinal cancer with a 5-year survival rate of only 9%.Of PDAC patients,15%-20%are eligible for radical surgery.Gemcitabine is an important chemotherapeutic agent for patients with PDAC;however,the efficacy of gemcitabine is limited due to resistance.Therefore,reducing gemcitabine resistance is essential for improving survival of patients with PDAC.Identifying the key target that determines gemcitabine resistance in PDAC and reversing gemcitabine resistance using target inhibitors in combination with gemcitabine are crucial steps in the quest to improve survival prognosis in patients with PDAC.Methods:We constructed a human genome-wide CRISPRa/dCas 9 overexpression library in PDAC cell lines to screen key targets of drug resistance based on sgRNA abundance and enrichment.Then,co-IP,ChIP,ChIP-seq,transcriptome sequencing,and qPCR were used to determine the specific mechanism by which phospholipase D1(PLD1)confers resistance to gemcitabine.Results:PLD1 combines with nucleophosmin 1(NPM1)and triggers NPM1 nuclear translocation,where NPM1 acts as a transcription factor to upregulate interleukin 7 receptor(IL7R)expression.Upon interleukin 7(IL-7)binding,IL7R activates the JAK1/STAT5 signaling pathway to increase the expression of the anti-apoptotic protein,BCL-2,and induce gemcitabine resistance.The PLD1 inhibitor,Vu0155069,targets PLD1 to induce apoptosis in gemcitabine-resistant PDAC cells.Conclusions:PLD1 is an enzyme that has a critical role in PDAC-associated gemcitabine resistance through a non-enzymatic interaction with NPM1,further promoting the downstream JAK1/STAT5/Bcl-2 pathway.Inhibiting any of the participants of this pathway can increase gemcitabine sensitivity.展开更多
BACKGROUND About 70%-80%of patients with primary membranous nephropathy(MN)have phospholipase A2 receptor(PLA2R)in renal tissue.Systemic light-chain(AL)amyloidosis is the most common type of amyloidosis.MN complicated...BACKGROUND About 70%-80%of patients with primary membranous nephropathy(MN)have phospholipase A2 receptor(PLA2R)in renal tissue.Systemic light-chain(AL)amyloidosis is the most common type of amyloidosis.MN complicated with amyloidosis is rare.CASE SUMMARY A 48-year-old Chinese male presented with nephrotic syndrome,positive serum PLA2R antibody,and positive serum and urine IgG-lambda type M-protein,with a normal ratio of serum-free light-chain level.The patient was diagnosed with MN accompanied by AL amyloidosis.He was treated with rituximab with glucocorticoids and CyBorD regimen of chemotherapy.After 21 mo of follow-up,the patient achieved complete remission regarding nephrotic syndrome without adverse effects of chemotherapy.CONCLUSION We report a case of PLA2R-related MN complicated with primary AL amyloidosis only with renal involvement and successfully treated with rituximab,glucocorticoids and chemotherapy.展开更多
研究背景力学门控性离子通道(mechanogated ion channels),又称为力学敏感性离子通道(mechanosensitive ion channels,MSIC),是心肌细胞的力学感受器之一。MSIC在心脏受到力学超负荷后电生理改变过程中起主要作用,可能是心肌细胞肥...研究背景力学门控性离子通道(mechanogated ion channels),又称为力学敏感性离子通道(mechanosensitive ion channels,MSIC),是心肌细胞的力学感受器之一。MSIC在心脏受到力学超负荷后电生理改变过程中起主要作用,可能是心肌细胞肥大过程中,力学负荷与蛋白质合成之间信号传导的一条重要通路。瞬时感受器电位(Transient receptor potential,TRP)离子通道C亚族(TRPC)蛋白TRPC1、C6对于心肌细胞适应生物力学刺激很重要,其表达上调会导致病理性心肌肥大及心衰<sup>[1-3]</sup>。TRPC通道不仅可被G蛋白耦联受体下游的磷脂酶C(phospholipase C,PLC)、二脂酰甘油(diacylglycerol,DAG)等信号分子继发激活,TRPC1、C6等可能还是力学敏感的离子通道,展开更多
Objective To survey changes and the significance of phospholipase A_2(PLA_2) on brain tissue of SD rat in acute pancreatitis.Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct...Objective To survey changes and the significance of phospholipase A_2(PLA_2) on brain tissue of SD rat in acute pancreatitis.Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct,rat model of severe acute pancreatitis(SAP) was made,and it included four groups: the control group,the sham-operation group, the SAP group and the PLA_2 inhibitor-treated group of SAP.Serum amylases,PLA_2 and PLA_2 in brain tissue were measured and the brain tissue changes were observed.Results There were no significant difference in serum amylases, PLA_2 and PLA_2 in brain tissue between the sham-operation and the control groups;the levels of serum amylases,PLA_2 and PLA_2 in brain tissue in the SAP group were higher than those in the control.In the SAP group expansion and hemorrhage of meninges,intracephalic arteriolar hyperemia,in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed,significant differences were found between two groups.Compared with the SAP group,the level of serum amylase,PLA_2 and PLA_2 in brain tissue were reduced significantly in the treatment group of SAP.Pathological damages in the treatment group were significantly reduced when compared with the SAP group.Conclusion PLA_2 might play an important role in brain tissue damages in severe acute pancreatitis.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82071376(to ZC)and 82001471(to CJ)the Natural Science Foundation of Shanghai,No.20ZR1410500(to ZC).
文摘Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.
基金This study was approved by the Clinical Research Ethics Committee of Zhongshan Hospital,Fudan University.
文摘BACKGROUND Patatin like phospholipase domain containing 8(PNPLA8)has been shown to play a significant role in various cancer entities.Previous studies have focused on its roles as an antioxidant and in lipid peroxidation.However,the role of PNPLA8 in colorectal cancer(CRC)progression is unclear.AIM To explore the prognostic effects of PNPLA8 expression in CRC.METHODS A retrospective cohort containing 751 consecutive CRC patients was enrolled.PNPLA8 expression in tumor samples was evaluated by immunohistochemistry staining and semi-quantitated with immunoreactive scores.CRC patients were divided into high and low PNPLA8 expression groups based on the cut-off va-lues,which were calculated by X-tile software.The prognostic value of PNPLA8 was identified using univariate and multivariate Cox regression analysis.The over-all survival(OS)rates of CRC patients in the study cohort were compared with Kaplan-Meier analysis and Log-rank test.RESULTS PNPLA8 expression was significantly associated with distant metastases in our cohort(P=0.048).CRC patients with high PNPLA8 expression indicated poor OS(median OS=35.3,P=0.005).CRC patients with a higher PNPLA8 expression at either stage I and II or stage III and IV had statistically significant shorter OS.For patients with left-sided colon and rectal cancer,the survival curves of two PN-PLA8-expression groups showed statistically significant differences.Multivariate analysis also confirmed that high PNPLA8 expression was an independent prog-nostic factor for overall survival(hazard ratio HR=1.328,95%CI:1.016-1.734,P=0.038).
基金the National Natural Science Foundation(81773982,82003937)Youth Academic leaders of the Qinglan Project in Jiangsu province for financial support。
文摘In the face of increasingly serious environmental pollution,the health of human lung tissues is also facing serious threats.Mogroside IIE(M2E)is the main metabolite of sweetening agents mogrosides from the anti-tussive Chinese herbal Siraitia grosvenori.The study elucidated the anti-inflammatory action and molecular mechanism of M2E against acute lung injury(ALI).A lipopolysaccharide(LPS)-induced ALI model was established in mice and MH-S cells were employed to explore the protective mechanism of M2E through the western blotting,co-immunoprecipitation,and quantitative real time-PCR analysis.The results indicated that M2E alleviated LPS-induced lung injury through restraining the activation of secreted phospholipase A2 type IIA(Pla2g2a)-epidermal growth factor receptor(EGFR).The interaction of Pla2g2a and EGFR was identified by co-immunoprecipitation.In addition,M2E protected ALI induced with LPS against inflammatory and damage which were significantly dependent upon the downregulation of AKT and m TOR via the inhibition of Pla2g2a-EGFR.Pla2g2a may represent a potential target for M2E in the improvement of LPS-induced lung injury,which may represent a promising strategy to treat ALI.
文摘Chagas disease (CD) affects 21 countries in the Americas and is caused by the parasite Trypanosoma cruzi. A key molecule involved in CD is lysophosphatidylcholine (LPC), which has been studied in various contexts: in the saliva of insect vectors, during the establishment of infection in the vertebrate host, and for the parasite itself. This lipid can be produced by the action of phospholipases A2 (PLA2), enzymes that catalyze the hydrolysis of phospholipids releasing fatty acids and lysophospholipids, such as LPC. This study investigates LPC levels and PLA2 activities in the plasma of CD patients and compares these levels with those in healthy individuals and patients with idiopathic dilated cardiomyopathy (IDCM). Plasma from 64 CD patients, 54 healthy individuals, and 16 IDCM patients were analyzed. LPC levels and the activity of two types of phospholipase A2: secreted (sPLA2) and lipoprotein-associated (Lp-PLA2) were measured. LPC levels and sPLA2 activity were similar between CD patients and the control groups. However, there were notable differences in LPC levels and sPLA2 activity between subgroups of CD patients and IDCM patients. This study is the first to identify LPC in patients with CD across various stages of the disease. It also offers new insights into the biochemical changes observed in the plasma of patients with IDCM.
基金Supported by the Science and Technology Research Foundation of Guizhou Province,No.QKHJC-ZK[2022]YB642Science and Technology Research Foundation of Hubei Province,No.2022BCE030+2 种基金Science and Technology Research Foundation of Zunyi City,No.ZSKH-HZ(2022)344Research Project on Traditional Chinese Medicine and Ethnic Medicine Science and Technology of Guizhou Provincial Administration of Traditional Chinese Medicine,No.QZYY-2023-021Science and Technology Research Foundation of Bijie City,No.BKH[2022]8.
文摘BACKGROUND Genetic factors of chronic intestinal ulcers are increasingly garnering attention.We present a case of chronic intestinal ulcers and bleeding associated with mu-tations of the activin A receptor type II-like 1(ACVRL1)and phospholipase A2 group IVA(PLA2G4A)genes and review the available relevant literature.CASE SUMMARY A 20-year-old man was admitted to our center with a 6-year history of recurrent abdominal pain,diarrhea,and dark stools.At the onset 6 years ago,the patient had received treatment at a local hospital for abdominal pain persisting for 7 d,under the diagnosis of diffuse peritonitis,acute gangrenous appendicitis with perforation,adhesive intestinal obstruction,and pelvic abscess.The surgical treat-ment included exploratory laparotomy,appendectomy,intestinal adhesiolysis,and pelvic abscess removal.The patient’s condition improved and he was dis-charged.However,the recurrent episodes of abdominal pain and passage of black stools started again one year after discharge.On the basis of these features and results of subsequent colonoscopy,the clinical diagnosis was established as in-flammatory bowel disease(IBD).Accordingly,aminosalicylic acid,immunotherapy,and related symptomatic treatment were administered,but the symptoms of the patient did not improve significantly.Further investigations revealed mutations in the ACVRL1 and PLA2G4A genes.ACVRL1 and PLA2G4A are involved in angiogenesis and coagulation,respectively.This suggests that the chronic intestinal ulcers and bleeding in this case may be linked to mutations in the ACVRL1 and PLA2G4A genes.Oral Kangfuxin liquid was administered to promote healing of the intestinal mucosa and effectively manage clinical symptoms.CONCLUSION Mutations in the ACVRL1 and PLA2G4A genes may be one of the causes of chronic intestinal ulcers and bleeding in IBD.Orally administered Kangfuxin liquid may have therapeutic potential.
文摘Phospholipase A2 (PLA2) is the key enzyme to the venom from Deinagkistrodon acutus which is one of the highly venomous snakes in China. In addition to being a catalyst for the hydrolysis of phospholipases A2 from snake venom, its well known that it possesses a broad spectrum of pharmacological activities, such as myotoxicity, neurotoxicity, cardiotoxicity, and hemolytic, anticoagulant and antiplatelet activities. However, snakebites are not efficiently treated by conventional serum therapy. Acute wounds can still cause poisoning and death. In order to find effective inhibitors of Deinagkistrodon venom acid phospholipase A2 (dPLA2), we obtained 385 compounds in 9 Chinese herbs from the TCMSP. These compounds were further performed to virtual screen using in silico tools like ADMET analysis, molecular docking and molecular dynamics (MD) simulation. After Pharmacokinetics analysis, we found 7 candidate compounds. Besides, analysis of small molecule interactions with dPLA2 confirmed that the amino acid residues HIS47 and GLY29 are key targets. Because they bind not only to the natural substrate phosphatidylcholine and compounds known for having inhibitory functions, but also for combining with potential antidote molecules in Chinese herbal medicine. This study is the first to report experience with virtual screening for possible inhibitor of dPLA2, such as the interaction spatial structure, binding energy and binding interaction analysis, these experiences not only provide reference for further experimental research, but also have a guideline for the study of drug molecular mechanism of action.
文摘Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated PNPc3:GUS and PNPc4:GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. PNPc4:GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 I^M BL BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 I^M BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.
基金the National Natural Science Foundation of China(31970603)Natural Science Foundation of Guangxi province(2019GXNSFDA185001)+1 种基金State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources(SKLCUSA-a202008 and SKLCUSA-a01)Guangxi University-Bama Research Fund(20220006).
文摘Salt and drought stress are common abiotic factors that exert a detrimental influence on seed germination,potentially leading to significantly impaired growth and production in rice.Gaining a comprehensive understanding of the molecular response of seeds to abiotic stress during the germination is of paramount importance.In the present study,we identified two R3-MYB genes in rice,namely OsTCL1 and OsTCL2,and characterized their roles in regulating seed germination under salt and drought stress.Plants with tcl1 and tcl2 mutant alleles exhibited delayed seed germination,particularly under stress conditions.The tcl1 tcl2 double mutant showed an even more pronounced reduction in germination during initial stages of germination,thereby indicating a redundant regulatory function of OsTCL1 and OsTCL2 in seed germination under abiotic stresses.Furthermore,we demonstrated that the transcript levels of several phospholipase D(PLD)genes were downregulated in the tcl1 tcl2 mutant,resulting in a decreased level of the phosphatidic acid(PA)product.Application of 1-butanol,a competitive substrate inhibitor of PLD-dependent production of PA,attenuated the stress response of the tcl1 tcl2 mutant.This suggests that OsTCL1 and OsTCL2 partially modulate seed germination through the PLD-PA signaling pathway.Moreover,there were alterations in the expression of genes involved in abscisic acid(ABA)biosynthesis,metabolism and signaling transduction in the double mutant.These changes affected the endogenous ABA level and ABA response,thereby influencing seed germination.Application of both 1-butanol and ABA synthesis inhibitor sodium tungstate(Na2WO4)nearly eliminated the differences in stress response between wild type and the tcl1 tcl2 mutant.This indicates that OsTCL1 and OsTCL2 synergistically coordinate seed germination under abiotic stresses through both the PLD-PA signaling and ABA-mediated pathways.
基金supported by the National Natural Science Foundation of China,No.82072192(to KLZ)Public Welfare Technology Research Project of Zhejiang Province,No.LGF20H150003(to KLZ)+1 种基金the Natural Science Foundation of Zhejiang Province,Nos.LY17H060009 and Y21H060050(both to WFN)Wenzhou Science and Technology Bureau Foundation,No.Y20210438(to KLZ)。
文摘Central nervous system(CNS)trauma,including traumatic brain injury and spinal cord injury,has a high rate of disability and mortality,and effective treatment is currently lacking.Previous studies have revealed that neural inflammation plays a vital role in CNS trauma.As the initial enzyme in neuroinflammation,cytosolic phospholipase A_(2)(cPLA2)can hydrolyze membranous phosphatides at the sn-2 position in a preferential way to release lysophospholipids andω3-polyunsaturated fatty acid dominated by arachidonic acid,thereby inducing secondary injuries.Although there is substantial fresh knowledge pertaining to cPLA2,in-depth comprehension of how cPLA2 participates in CNS trauma and the potential methods to amelio rate the clinical res ults after CNS trauma are still insufficient.The present review summarizes the latest understanding of how cPLA2 participates in CNS trauma,highlighting novel findings pertaining to how cPLA2 activation initiates the potential mechanisms specifically,neuroinflammation,lysosome membrane functions,and autophagy activity,that damage the CNS after trauma.Moreover,we focused on testing a variety of drugs capable of inhibiting cPLA2 or the upstream pathway,and we explored how those agents might be utilized as treatments to improve the results following CNS trauma.This review aimed to effectively understand the mechanism of cPLA2 activation and its role in the pathophysiological processes of CNS trauma and provide clarification and a new referential framework for future research.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1201100)the National Natural Science Foundation of China(Grant Nos.82103006,82030092,81720108028,82072657,82072716,82103003,82173295,81871968,81871978,82072691,and 82103222)+1 种基金the Tianjin Hygiene Healthy Science and Technology Project(Grant No.TJWJ2022MS007)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2020KJ141).
文摘Objective:Pancreatic ductal adenocarcinoma(PDAC)is a highly malignant gastrointestinal cancer with a 5-year survival rate of only 9%.Of PDAC patients,15%-20%are eligible for radical surgery.Gemcitabine is an important chemotherapeutic agent for patients with PDAC;however,the efficacy of gemcitabine is limited due to resistance.Therefore,reducing gemcitabine resistance is essential for improving survival of patients with PDAC.Identifying the key target that determines gemcitabine resistance in PDAC and reversing gemcitabine resistance using target inhibitors in combination with gemcitabine are crucial steps in the quest to improve survival prognosis in patients with PDAC.Methods:We constructed a human genome-wide CRISPRa/dCas 9 overexpression library in PDAC cell lines to screen key targets of drug resistance based on sgRNA abundance and enrichment.Then,co-IP,ChIP,ChIP-seq,transcriptome sequencing,and qPCR were used to determine the specific mechanism by which phospholipase D1(PLD1)confers resistance to gemcitabine.Results:PLD1 combines with nucleophosmin 1(NPM1)and triggers NPM1 nuclear translocation,where NPM1 acts as a transcription factor to upregulate interleukin 7 receptor(IL7R)expression.Upon interleukin 7(IL-7)binding,IL7R activates the JAK1/STAT5 signaling pathway to increase the expression of the anti-apoptotic protein,BCL-2,and induce gemcitabine resistance.The PLD1 inhibitor,Vu0155069,targets PLD1 to induce apoptosis in gemcitabine-resistant PDAC cells.Conclusions:PLD1 is an enzyme that has a critical role in PDAC-associated gemcitabine resistance through a non-enzymatic interaction with NPM1,further promoting the downstream JAK1/STAT5/Bcl-2 pathway.Inhibiting any of the participants of this pathway can increase gemcitabine sensitivity.
文摘BACKGROUND About 70%-80%of patients with primary membranous nephropathy(MN)have phospholipase A2 receptor(PLA2R)in renal tissue.Systemic light-chain(AL)amyloidosis is the most common type of amyloidosis.MN complicated with amyloidosis is rare.CASE SUMMARY A 48-year-old Chinese male presented with nephrotic syndrome,positive serum PLA2R antibody,and positive serum and urine IgG-lambda type M-protein,with a normal ratio of serum-free light-chain level.The patient was diagnosed with MN accompanied by AL amyloidosis.He was treated with rituximab with glucocorticoids and CyBorD regimen of chemotherapy.After 21 mo of follow-up,the patient achieved complete remission regarding nephrotic syndrome without adverse effects of chemotherapy.CONCLUSION We report a case of PLA2R-related MN complicated with primary AL amyloidosis only with renal involvement and successfully treated with rituximab,glucocorticoids and chemotherapy.
文摘研究背景力学门控性离子通道(mechanogated ion channels),又称为力学敏感性离子通道(mechanosensitive ion channels,MSIC),是心肌细胞的力学感受器之一。MSIC在心脏受到力学超负荷后电生理改变过程中起主要作用,可能是心肌细胞肥大过程中,力学负荷与蛋白质合成之间信号传导的一条重要通路。瞬时感受器电位(Transient receptor potential,TRP)离子通道C亚族(TRPC)蛋白TRPC1、C6对于心肌细胞适应生物力学刺激很重要,其表达上调会导致病理性心肌肥大及心衰<sup>[1-3]</sup>。TRPC通道不仅可被G蛋白耦联受体下游的磷脂酶C(phospholipase C,PLC)、二脂酰甘油(diacylglycerol,DAG)等信号分子继发激活,TRPC1、C6等可能还是力学敏感的离子通道,
文摘Objective To survey changes and the significance of phospholipase A_2(PLA_2) on brain tissue of SD rat in acute pancreatitis.Methods With retrograde injection of 3% taurocholate sodium into pancreatic and biliary duct,rat model of severe acute pancreatitis(SAP) was made,and it included four groups: the control group,the sham-operation group, the SAP group and the PLA_2 inhibitor-treated group of SAP.Serum amylases,PLA_2 and PLA_2 in brain tissue were measured and the brain tissue changes were observed.Results There were no significant difference in serum amylases, PLA_2 and PLA_2 in brain tissue between the sham-operation and the control groups;the levels of serum amylases,PLA_2 and PLA_2 in brain tissue in the SAP group were higher than those in the control.In the SAP group expansion and hemorrhage of meninges,intracephalic arteriolar hyperemia,in meninges and cephalic-parenchyma infiltration of inflammatory cells and interval broaden were observed,significant differences were found between two groups.Compared with the SAP group,the level of serum amylase,PLA_2 and PLA_2 in brain tissue were reduced significantly in the treatment group of SAP.Pathological damages in the treatment group were significantly reduced when compared with the SAP group.Conclusion PLA_2 might play an important role in brain tissue damages in severe acute pancreatitis.