Benzophenones(BPs), a group of widely used UV filters, exert multiple, significant toxicity effects. The 11 BPs were selected as target compounds, and the photobacterium acute toxicity test and an index for acute to...Benzophenones(BPs), a group of widely used UV filters, exert multiple, significant toxicity effects. The 11 BPs were selected as target compounds, and the photobacterium acute toxicity test and an index for acute toxicity formation potential(ATFP) were used to evaluate the toxicity variation of BPs before and after a photoinduction–chlorination disinfection process.Orthogonal experiments were performed at different pH values and chlorine dosages. The characteristics of ATFP values for 11 BPs after a photoinduction–chlorination process can be summarized as follows:(1) The ATFPs decreased as the hydroxyl group number increased in BPs molecules.(2) For those BPs with the same hydroxyl group number, the ATFPs were higher when the hydroxyl groups were located at the 3-or 4-position than those at the 2-position; the BPs with hydroxyl groups distributed on two benzene rings had higher ATFPs than those on one ring.(3) Introducing a methoxyl group and sulfonic acid group into BP molecules increased the ATFP values.(4) The ATFPs were p H-dependent, the values of which were lowest at the neutral condition and highest at the acid condition.(5) The ATFPs increased and then decreased as the chlorine dosage increased. The results can be used as a reference to scientifically evaluate the environmental fate and potential risk of BPs in photoinduction–chlorination disinfection processes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21577154,21377143)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB14040201)
文摘Benzophenones(BPs), a group of widely used UV filters, exert multiple, significant toxicity effects. The 11 BPs were selected as target compounds, and the photobacterium acute toxicity test and an index for acute toxicity formation potential(ATFP) were used to evaluate the toxicity variation of BPs before and after a photoinduction–chlorination disinfection process.Orthogonal experiments were performed at different pH values and chlorine dosages. The characteristics of ATFP values for 11 BPs after a photoinduction–chlorination process can be summarized as follows:(1) The ATFPs decreased as the hydroxyl group number increased in BPs molecules.(2) For those BPs with the same hydroxyl group number, the ATFPs were higher when the hydroxyl groups were located at the 3-or 4-position than those at the 2-position; the BPs with hydroxyl groups distributed on two benzene rings had higher ATFPs than those on one ring.(3) Introducing a methoxyl group and sulfonic acid group into BP molecules increased the ATFP values.(4) The ATFPs were p H-dependent, the values of which were lowest at the neutral condition and highest at the acid condition.(5) The ATFPs increased and then decreased as the chlorine dosage increased. The results can be used as a reference to scientifically evaluate the environmental fate and potential risk of BPs in photoinduction–chlorination disinfection processes.