A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styre...A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styrene in toluene. The polymerization proceeds with DMPA as photo-initiator, Fe(DC)(3) as catalyst and DC as a reversible transfer group, while the halogen and ligands are free. Well-defined PSt was prepared and the polymerization mechanism revealed by end group analysis belongs to a reverse ATRP. Block copolymer was prepared by using thus obtained PSt as macroinitiator and Fe(DC)(2) as catalyst under UV light irradiation via a conventional ATRP process.展开更多
A facile scalable synthesis of hierarchical Sb/C micro-/nanohybrid has been addressed in this work, which possesses the advantages of both micrometer and nanometer scale structures as lithium-ion battery anode. Difunc...A facile scalable synthesis of hierarchical Sb/C micro-/nanohybrid has been addressed in this work, which possesses the advantages of both micrometer and nanometer scale structures as lithium-ion battery anode. Difunctional methacrylate monomers are used as solvent and carbon source as well. Liquid precursor of antimony(III) n-butoxide is dissolved in the resin monomer solution, and further incorporated into the cross-linking polymer network via photo polymerization. Through calcination in argon/hydrogen atmosphere, antimony nanoparticles are in situ formed by carbothermal reduction, and homogeneously embedded in the in situ formed micrometer sized carbon matrix. The morphology, structure, crys- tallinity, spatial dispersion, composition, and electrochemical performance of the Sb/C micro-/nanohybrid are systemati- cally investigated. The cyclic and rate performance of the Sb/C micro-/nanohybrid anode have been effectively improved compared to the pure carbon anode. A reversible capacity of 362 mAh g-1 is achieved with a reasonable mass loading density after 300 cycles at 66 mA g-1, corresponding to capacity retention of 79%. With reducing mass loading density, the reversible capacity reaches 793 mAh g-1 after 100 cycles. Moreover, the electrochemical performance of Sb/C micro-/nanohybrid as sodium-ion battery anode is also investigated in this study.展开更多
文摘A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styrene in toluene. The polymerization proceeds with DMPA as photo-initiator, Fe(DC)(3) as catalyst and DC as a reversible transfer group, while the halogen and ligands are free. Well-defined PSt was prepared and the polymerization mechanism revealed by end group analysis belongs to a reverse ATRP. Block copolymer was prepared by using thus obtained PSt as macroinitiator and Fe(DC)(2) as catalyst under UV light irradiation via a conventional ATRP process.
基金funded by the Natural Science Foundation of China(No.51702335)open project of the Beijing National Laboratory for Molecular Science(No.20140138)+1 种基金the CASEU S&T cooperation partner program(No.174433KYSB20150013)the Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province
文摘A facile scalable synthesis of hierarchical Sb/C micro-/nanohybrid has been addressed in this work, which possesses the advantages of both micrometer and nanometer scale structures as lithium-ion battery anode. Difunctional methacrylate monomers are used as solvent and carbon source as well. Liquid precursor of antimony(III) n-butoxide is dissolved in the resin monomer solution, and further incorporated into the cross-linking polymer network via photo polymerization. Through calcination in argon/hydrogen atmosphere, antimony nanoparticles are in situ formed by carbothermal reduction, and homogeneously embedded in the in situ formed micrometer sized carbon matrix. The morphology, structure, crys- tallinity, spatial dispersion, composition, and electrochemical performance of the Sb/C micro-/nanohybrid are systemati- cally investigated. The cyclic and rate performance of the Sb/C micro-/nanohybrid anode have been effectively improved compared to the pure carbon anode. A reversible capacity of 362 mAh g-1 is achieved with a reasonable mass loading density after 300 cycles at 66 mA g-1, corresponding to capacity retention of 79%. With reducing mass loading density, the reversible capacity reaches 793 mAh g-1 after 100 cycles. Moreover, the electrochemical performance of Sb/C micro-/nanohybrid as sodium-ion battery anode is also investigated in this study.