期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
An advanced Ⅲ-Ⅴ-on-silicon photonic integration platform 被引量:2
1
作者 Yingtao Hu Di Liang Raymond G.Beausoleil 《Opto-Electronic Advances》 SCIE 2021年第9期14-27,共14页
In many application scenarios,silicon(Si)photonics favors the integration of Ⅲ-Ⅴ gain material onto Si substrate to real-ize the on-chip light source.In addition to the current popular integration approaches of Ⅲ-... In many application scenarios,silicon(Si)photonics favors the integration of Ⅲ-Ⅴ gain material onto Si substrate to real-ize the on-chip light source.In addition to the current popular integration approaches of Ⅲ-Ⅴ-on-Si wafer bonding or dir-ect heteroepitaxial growth,a newly emerged promising solution of epitaxial regrowth on bonded substrate has attracted a lot of interests.High-quality Ⅲ-Ⅴ material realization and successful laser demonstrations show its great potential to be a promising integration platform for low-cost,high-integration density and highly scalable active-passive photonic integra-tion on Si.This paper reviews recent research work on this regrowth on bonded template platform including template de-velopments,regrown material characterizations and laser demonstrations.The potential advantages,opportunities and challenges of this approach are discussed. 展开更多
关键词 Si photonics Ⅲ-Ⅴ-on-Si laser photonic integration epitaxy regrowth
下载PDF
Complete active–passive photonic integration based on GaN-on-silicon platform
2
作者 Jiabin Yan Li Fang +4 位作者 Zhihang Sun Hao Zhang Jialei Yuan Yan Jiang Yongjin Wang 《Advanced Photonics Nexus》 2023年第4期50-57,共8页
Suitable optoelectronic integration platforms enable the realization of numerous application systems at the chip scale and are highly anticipated in the rapidly growing market.We report a GaN-on-silicon-based photonic... Suitable optoelectronic integration platforms enable the realization of numerous application systems at the chip scale and are highly anticipated in the rapidly growing market.We report a GaN-on-silicon-based photonic integration platform and demonstrate a photonic integrated chip comprising a light source,modulator,photodiode(PD),waveguide,and Y-branch splitter based on this platform.The light source,modulator,and PD adopt the same multiple quantum wells(MQWs)diode structure without encountering incompatibility problems faced in other photonic integration approaches.The waveguide-structure MQW electro-absorption modulator has obvious indirect light modulation capability,and its absorption coefficient changes with the applied bias voltage.The results successfully validate the data transmission and processing using near-ultraviolet light with peak emission wavelength of 386 nm.The proposed complete active–passive approach that has simple fabrication and low cost provides new prospects for next-generation photonic integration. 展开更多
关键词 GaN photonic integration multiple quantum wells MODULATOR
下载PDF
Colloidal semiconductor nanocrystals for light emission and photonic integration
3
作者 Huan Liu Dabin Lin +2 位作者 Puning Wang Tingchao He Rui Chen 《Chip》 EI 2024年第1期1-17,共17页
Solution-processed colloidal semiconductor nanocrystals(NCs)have become attractive materials for the development of optoelectronic and photonic devices due to their inexpensive synthesis and excellent optical properti... Solution-processed colloidal semiconductor nanocrystals(NCs)have become attractive materials for the development of optoelectronic and photonic devices due to their inexpensive synthesis and excellent optical properties.Recently,CdSe NCs with different dimensions and structures have achieved significant progress in photonic integrated circuits(PICs),including light generation(laser),guiding(waveguide),modulation,and detection on a chip.This article summarizes the development of CdSe NCs–based lasers and discusses the challenges and opportunities for the application of CdSe NCs in PICs.Firstly,an overview of the optical properties of CdSe-based NCs with different dimensions is presented,with emphasis on the amplified stimulated emission and laser properties.Then,the nanophotonic devices and PICs based on CdSe NCs are introduced and discussed.Finally,the prospects for PICs are addressed. 展开更多
关键词 CdSe nanocrystals Amplified spontaneous emission WAVEGUIDE LASER photonic integrated circuits
原文传递
Mode division multiplexing:from photonic integration to optical fiber transmission[Invited] 被引量:13
4
作者 Jiangbing Du Weihong Shen +3 位作者 jiacheng Liu Yufeng Chen Xinyi Chen Zuyuan He 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第9期29-52,共24页
To overcome the capacity crunch of optical communications based on the traditional single-mode fiber(SMF), different modes in a few-mode fiber(FMF) can be employed for mode division multiplexing(MDM). MDM can also be ... To overcome the capacity crunch of optical communications based on the traditional single-mode fiber(SMF), different modes in a few-mode fiber(FMF) can be employed for mode division multiplexing(MDM). MDM can also be extended to photonic integration for obtaining improved density and efficiency, as well as interconnection capacity. Therefore, MDM becomes the most promising method for maintaining the trend of "Moore’s law" in photonic integration and optical fiber transmission. In this tutorial, we provide a review of MDM works and cutting-edge progresses from photonic integration to optical fiber transmission, including our recent works of MDM low-noise amplification, FMF fiber design, MDM Si photonic devices, and so on. Research and application challenges of MDM for optical communications regarding long-haul transmission and short reach interconnection are discussed as well. The content is expected to be of important value for both academic researchers and industrial engineers during the development of next-generation optical communication systems,from photonic chips to fiber links. 展开更多
关键词 mode division multiplexing photonic integration few-mode fiber optical transmission optical interconnection
原文传递
Investigation progress on key photonic integration for application in optical communication network 被引量:3
5
作者 王启明 《Science in China(Series F)》 2003年第1期60-66,共7页
Proceeding from the consideration of the demands from the functional architecture of high speed, high capacity optical communication network, this paper points out that photonic integrated devices, including high spee... Proceeding from the consideration of the demands from the functional architecture of high speed, high capacity optical communication network, this paper points out that photonic integrated devices, including high speed response laser source, narrow band response photodetector high speed wavelength converter, dense wavelength multi/demultiplexer, low loss high speed response photo-switch and multi-beam coupler are the key components in the system. The investigation progress in the laboratory will be introduced. 展开更多
关键词 optical network photonic integration active devices passive devices.
原文传递
On-chip optical sources of 3D photonic integration based on active fluorescent polymer waveguide microdisks for light display application
6
作者 Chunxue Wang Daming Zhang +5 位作者 Jian Yue Hang Lin Xucheng Zhang Tong Zhang Changming Chen Teng Fei 《PhotoniX》 SCIE EI 2023年第1期507-521,共15页
In this work,on-chip three-dimensional(3D)photonic integrated optical sources based on active fluorescent polymer waveguide microdisks are proposed for light display application.Fluorescent green and red oligomers wit... In this work,on-chip three-dimensional(3D)photonic integrated optical sources based on active fluorescent polymer waveguide microdisks are proposed for light display application.Fluorescent green and red oligomers with high-efficiency photoluminescence are doped into epoxy crosslinking SU-8 polymer as the waveguide gain medium.The microdisk-based on-chip optically pumping light sources are designed and fabricated using the organic functionalized materials by direct UV written process.The promising stacking dual-microdisk structures with double gain layers could provide white signal light source generated perpendicular to the chip,and green signal light source stimulated in the chip.The approach could realize the monolithically on-chip assembled vertical and horizontal bright emitters.The optical pumping threshold power is obtained as 50 mW with continuous-wave(CW)pumping.The average gain coefficient of a white light source is measured by vertical fiber coupling as 112 dB/W,and that of green light source by horizontal fiber coupling as 137 dB/W,respectively.The rising and falling response time of the on-chip optical sources are 60 and 80μs under modulating pulsed pumping.This technique is very promising for achieving 3D integrated light display application,including photonic circuits and optical information encryption. 展开更多
关键词 3D photonic integration Active fluorescent polymers Optical waveguide microdisks Light display application
原文传递
Hybrid material integration in silicon photonic integrated circuits 被引量:3
7
作者 Swapnajit Chakravarty† Min Teng +1 位作者 Reza Safian Leimeng Zhuang 《Journal of Semiconductors》 EI CAS CSCD 2021年第4期33-42,共10页
Hybrid integration ofⅢ-Ⅴand ferroelectric materials is being broadly adopted to enhance functionalities in silicon photonic integrated circuits(PICs).Bonding and transfer printing have been the popular approaches fo... Hybrid integration ofⅢ-Ⅴand ferroelectric materials is being broadly adopted to enhance functionalities in silicon photonic integrated circuits(PICs).Bonding and transfer printing have been the popular approaches for integration of III–V gain media with silicon PICs.Similar approaches are also being considered for ferroelectrics to enable larger RF modulation bandwidths,higher linearity,lower optical loss integrated optical modulators on chip.In this paper,we review existing integration strategies ofⅢ-Ⅴmaterials and present a route towards hybrid integration of bothⅢ-Ⅴand ferroelectrics on the same chip.We show that adiabatic transformation of the optical mode between hybrid ferroelectric and silicon sections enables efficient transfer of optical modal energies for maximum overlap of the optical mode with the ferroelectric media,similar to approaches adopted to maximize optical overlap with the gain section,thereby reducing lasing thresholds for hybridⅢ-Ⅴintegration with silicon PICs.Preliminary designs are presented to enable a foundry compatible hybrid integration route of diverse functionalities on silicon PICs. 展开更多
关键词 CMOS technology photonic integrated circuits hybrid integration ferroelectric modulator
下载PDF
Subwavelength on-chip light focusing with bigradient all-dielectric metamaterials for dense photonic integration 被引量:3
8
作者 Zhihao Ren Bowei Dong +4 位作者 Qifeng Qiao Xinmiao Liu Jinyuan Liu Guangya Zhou Chengkuo Lee 《InfoMat》 SCIE CAS 2022年第2期139-151,共13页
Photonic integrated circuits(PICs)provide a promising platform for miniaturized on-chip optical systems for communication,computation,and sensing applications.The dense integration of photonic components is one of the... Photonic integrated circuits(PICs)provide a promising platform for miniaturized on-chip optical systems for communication,computation,and sensing applications.The dense integration of photonic components is one of the keys to exploit the advantages of PIC.Although light focusing is a fundamental and indispensable function in PICs,focusing light at the micro/nanometer-scale is challenging.Here,a bigradient on-chip metalens(BOML)is proposed to achieve ultrasmall focal lengths and spot sizes at the subwavelength scale for dense PICs.The design of BOML combines gradient geometry and gradient refractive index into one metalens by simultaneously engineering the length and width of subwavelength silicon slots.With a small device footprint of only 168μm,the BOML achieves efficient on-chip focusing with the recordbreaking figure-of-merits,which are the ratio of wavelength to focal length/spot size(0.268 and 2.83)and numerical aperture(1.78).Leveraging on the Fresnel design,the footprint of BOML is further reduced by 55.1%,and the numerical aperture is enhanced to 1.9.The demonstration of mode conversion and beam steering with efficiency over 80%and a tilting range of 7.2°holds the potential for highly dense on-chip photonic systems for optical communication,optical sensing,nonlinear optics,and neural networks for deep learning. 展开更多
关键词 all-dielectric metamaterials beam steering MID-INFRARED on-chip focusing photonic integrated circuits
原文传递
Pixelated non-volatile programmable photonic integrated circuits with 20-level intermediate states 被引量:1
9
作者 Wenyu Chen Shiyuan Liu Jinlong Zhu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期477-487,共11页
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ... Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces. 展开更多
关键词 programmable photonic integrated circuits phase change materials multi-level intermediate states metasurfaces
下载PDF
High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
10
作者 Haizhou Huang Huaixi Chen +7 位作者 Huagang Liu Zhi Zhang Xinkai Feng Jiaying Chen Hongchun Wu Jing Deng Wanguo Liang Wenxiong Lin 《Opto-Electronic Science》 2024年第4期12-20,共9页
Integrated photonic devices are essential for on-chip optical communication,optical-electronic systems,and quantum information sciences.To develop a high-fidelity interface between photonics in various frequency domai... Integrated photonic devices are essential for on-chip optical communication,optical-electronic systems,and quantum information sciences.To develop a high-fidelity interface between photonics in various frequency domains without disturbing their quantum properties,nonlinear frequency conversion,typically steered with the quadratic(χ2)process,should be considered.Furthermore,another degree of freedom in steering the spatial modes during theχ2 process,with unprecedent mode intensity is proposed here by modulating the lithium niobate(LN)waveguide-based inter-mode quasi-phasematching conditions with both temperature and wavelength parameters.Under high incident light intensities(25 and 27.8 dBm for the pump and the signal lights,respectively),mode conversion at the sum-frequency wavelength with sufficient high output power(−7–8 dBm)among the TM01,TM10,and TM00 modes is realized automatically with characterized broad temperature(ΔT≥8°C)and wavelength windows(Δλ≥1 nm),avoiding the previous efforts in carefully preparing the signal or pump modes.The results prove that high-intensity spatial modes can be prepared at arbitrary transparent wavelength of theχ2 media toward on-chip integration,which facilitates the development of chip-based communication and quantum information systems because spatial correlations can be applied to generate hyperentangled states and provide additional robustness in quantum error correction with the extended Hilbert space. 展开更多
关键词 integrated photonics LN waveguide sum-frequency generation spatial-mode steering on-chip integration
下载PDF
Ultra-Low Linewidth Frequency Stabilized Integrated Lasers: A New Frontier in Integrated Photonics
11
作者 GU Zhenqian YANG Zhen +3 位作者 ZHA Lulu HU Junhui CHI Nan SHEN Chao 《ZTE Communications》 2024年第4期29-39,共11页
With the advancement of photonic integration technology,ultra-low linewidth frequency-stabilized lasers have demonstrated significant potential in precision measurement,quantum communication,atomic clocks,etc.This rev... With the advancement of photonic integration technology,ultra-low linewidth frequency-stabilized lasers have demonstrated significant potential in precision measurement,quantum communication,atomic clocks,etc.This review summarizes the latest developments in integrated photonics for achieving ultra-low linewidth lasers,particularly breakthroughs made by integrating Brillouin lasers.We discuss the design principles,manufacturing processes,performance characteristics,and potential value of these lasers in various applications. 展开更多
关键词 photonic integrated circuit(PIC) ultra-low linewidth Brillouin lasers high Q-factor
下载PDF
Science Letters:The Moore’s Law for photonic integrated circuits 被引量:2
12
作者 THYLEN L. HE Sailing +1 位作者 WOSINSKI L. DAI Daoxin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第12期1961-1967,共7页
We formulate a “Moore’s law” for photonic integrated circuits (PICs) and their spatial integration density using two methods. One is decomposing the integrated photonics devices of diverse types into equivalent bas... We formulate a “Moore’s law” for photonic integrated circuits (PICs) and their spatial integration density using two methods. One is decomposing the integrated photonics devices of diverse types into equivalent basic elements, which makes a comparison with the generic elements of electronic integrated circuits more meaningful. The other is making a complex compo- nent equivalent to a series of basic elements of the same functionality, which is used to calculate the integration density for func- tional components realized with different structures. The results serve as a benchmark of the evolution of PICs and we can con- clude that the density of integration measured in this way roughly increases by a factor of 2 per year. The prospects for a continued increase of spatial integration density are discussed. 展开更多
关键词 Moore's Law photonic integrated circuit (PIC) photonic lightwave circuit (PLC) photonic integration density photonic filters photonic multiplexing
下载PDF
Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier
13
作者 Feng Xiao Qin Han +3 位作者 Han Ye Shuai Wang Zi-Qing Lu Fan Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期686-692,共7页
We have realized integration of evanescent wave coupled photodetector(ECPD)and multi-quantum well(MQW)semiconductor optical amplifier(SOA)on MOCVD platform by investigating butt-joint regrowth method of thick InP/InGa... We have realized integration of evanescent wave coupled photodetector(ECPD)and multi-quantum well(MQW)semiconductor optical amplifier(SOA)on MOCVD platform by investigating butt-joint regrowth method of thick InP/InGaAsP waveguides to deep etched SOA mesas.The combination of inductively coupled plasma etching and wet chemical etching technique has been studied to define the final mesa shape before regrowth.By comparing the etching profiles of different non-selective etchants,we have obtained a controllable non-reentrant mesa shape with smooth sidewall by applying one step 2 HBr:2 H_(3)PO_(4):K_(2)Cr_(2)O_(7)wet etching.A high growth temperature of 680℃is found helpful to enhance planar regrowth.By comparing the growth morphologies and simulating optical transmission along different directions,we determined that waveguides should travel across the regrowth interface along the[110]direction.The relation between growth rate and mask design has been extensively studied and the result can provide an important guidance for future mask design and vertical alignment between the active and passive cores.ECPD-SOA integrated device has been successfully achieved by this method without further regrowth steps and provided a responsivity of 7.8 A/W.The butt-joint interface insertion loss is estimated to be 1.05 dB/interface. 展开更多
关键词 butt-joint regrowth etching profile non-reentrant mesa photonic integration
下载PDF
Low-loss chip-scale programmable silicon photonic processor 被引量:7
14
作者 Yiwei Xie Shihan Hong +4 位作者 Hao Yan Changping Zhang Long Zhang Leimeng Zhuang Daoxin Dai 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第3期25-41,共17页
Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications,such as lidar,radar,and artificial intelligence.Silicon ph... Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications,such as lidar,radar,and artificial intelligence.Silicon photonics has unique advantages of ultra-high integration density as well as CMOS compatibility,and thus makes it possible to develop large-scale programmable optical signal processors.The challenge is the high silicon waveguides propagation losses and the high calibration complexity for all tuning elements due to the random phase errors.In this paper,we propose and demonstrate a programmable silicon photonic processor for the first time by introducing low-loss multimode photonic waveguide spirals and low-random-phase-error Mach-Zehnder switches.The present chip-scale programmable silicon photonic processor comprises a 1×4 variable power splitter based on cascaded Mach-Zehnder couplers(MZCs),four Ge/Si photodetectors,four channels of thermally-tunable optical delaylines.Each channel consists of a continuously-tuning phase shifter based on a waveguide spiral with a micro-heater and a digitally-tuning delayline realized with cascaded waveguide-spiral delaylines and MZSs for 5.68 ps time-delay step.Particularly,these waveguide spirals used here are designed to be as wide as 2μm,enabling an ultralow propagation loss of 0.28 dB/cm.Meanwhile,these MZCs and MZSs are designed with 2-μm-wide arm waveguides,and thus the random phase errors in the MZC/MZS arms are negligible,in which case the calibration for these MZSs/MZCs becomes easy and furthermore the power consumption for compensating the phase errors can be reduced greatly.Finally,this programmable silicon photonic processor is demonstrated successfully to verify a number of distinctively different functionalities,including tunable time-delay,microwave photonic beamforming,arbitrary optical signal filtering,and arbitrary waveform generation. 展开更多
关键词 silicon photonics PROGRAMMABLE photonic integrated circuit WAVEGUIDE delay lines Mach-Zehnder interferometer
下载PDF
Avalanche photodiodes on silicon photonics 被引量:5
15
作者 Yuan Yuan Bassem Tossoun +5 位作者 Zhihong Huang Xiaoge Zeng Geza Kurczveil Marco Fiorentino Di Liang Raymond G.Beausoleil 《Journal of Semiconductors》 EI CAS CSCD 2022年第2期11-23,共13页
Silicon photonics technology has drawn significant interest due to its potential for compact and high-performance photonic integrated circuits.The Ge-or III-V material-based avalanche photodiodes integrated on silicon... Silicon photonics technology has drawn significant interest due to its potential for compact and high-performance photonic integrated circuits.The Ge-or III-V material-based avalanche photodiodes integrated on silicon photonics provide ideal high sensitivity optical receivers for telecommunication wavelengths.Herein,the last advances of monolithic and hetero-geneous avalanche photodiodes on silicon are reviewed,including different device structures and semiconductor systems. 展开更多
关键词 avalanche photodiode silicon photonics photonic integrated circuit
下载PDF
Towards electronic-photonic-converged thermo-optic feedback tuning 被引量:4
16
作者 Min Tan Kaixuan Ye +4 位作者 Da Ming Yuhang Wang Zhicheng Wang Li Jin Junbo Feng 《Journal of Semiconductors》 EI CAS CSCD 2021年第2期51-63,共13页
As Moore’s law approaching its end,electronics is hitting its power,bandwidth,and capacity limits.Photonics is able to overcome the performance limits of electronics but lacks practical photonic register and flexible... As Moore’s law approaching its end,electronics is hitting its power,bandwidth,and capacity limits.Photonics is able to overcome the performance limits of electronics but lacks practical photonic register and flexible control.Combining electronics and photonics provides the best of both worlds and is widely regarded as an important post-Moore’s direction.For stability and dynamic operations considerations,feedback tuning of photonic devices is required.For silicon photonics,the thermooptic effect is the most frequently used tuning mechanism due to the advantages of high efficiency and low loss.However,it brings new design requirements,creating new design challenges.Emerging applications,such as optical phased array,optical switches,and optical neural networks,employ a large number of photonic devices,making PCB tuning solutions no longer suitable.Electronic-photonic-converged solutions with compact footprints will play an important role in system scalability.In this paper,we present a unified model for thermo-optic feedback tuning that can be specialized to different applications,review its recent advances,and discuss its future trends. 展开更多
关键词 power management IC integrated photonics electronic-photonic convergence thermo-optic tuning feedbac
下载PDF
High performance integrated photonic circuit based on inverse design method 被引量:6
17
作者 Huixin Qi Zhuochen Du +3 位作者 Xiaoyong Hu Jiayu Yang Saisai Chu Qihuang Gong 《Opto-Electronic Advances》 SCIE EI CAS 2022年第10期22-34,共13页
The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The... The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits. 展开更多
关键词 all-optical integrated photonic circuit inverse design all-optical switch all-optical XOR logic gate
下载PDF
Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators 被引量:4
18
作者 Long Zhang Ming Zhang +3 位作者 Tangnan Chen Dajian Liu Shihan Hong Daoxin Dai 《Opto-Electronic Advances》 SCIE EI CAS 2022年第7期1-9,共9页
A compact spectrometer on silicon is proposed and demonstrated with an ultrahigh resolution.It consists of a thermally-tunable ultra-high-Q resonator aiming at ultrahigh resolution and an array of wideband resonators ... A compact spectrometer on silicon is proposed and demonstrated with an ultrahigh resolution.It consists of a thermally-tunable ultra-high-Q resonator aiming at ultrahigh resolution and an array of wideband resonators for achieving a broadened working window.The present on-chip spectrometer has a footprint as compact as 0.35 mm^(2),and is realized with standard multi-project-wafer foundry processes.The measurement results show that the on-chip spectrometer has an ultra-high resolution Δλ of 5 pm and a wide working window of 10 nm.The dynamic range defined as the ratio of the working window and the wavelength resolution is as large as 1940,which is the largest for on-chip dispersive spectro-meters to the best of our knowledge.The present high-performance on-chip spectrometer has great potential for high-resolution spectrum measurement in the applications of gas sensing,food monitoring,health analysis,etc. 展开更多
关键词 integrated photonics SILICON SPECTROMETER RESONATOR
下载PDF
Photonic integrated neuro-synaptic core for convolutional spiking neural network 被引量:3
19
作者 Shuiying Xiang Yuechun Shi +14 位作者 Yahui Zhang Xingxing Guo Ling Zheng Yanan Han Yuna Zhang Ziwei Song Dianzhuang Zheng Tao Zhang Hailing Wang Xiaojun Zhu Xiangfei Chen Min Qiu Yichen Shen Wanhua Zheng Yue Hao 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第11期29-42,共14页
Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions... Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network(PSNN).However,they are separately implemented with different photonic materials and devices,hindering the large-scale integration of PSNN.Here,we propose,fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback(DFB)laser with a saturable absorber(DFB-SA).A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation.Furthermore,a fourchannel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network,achieving a recognition accuracy of 87%for the MNIST dataset.The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip. 展开更多
关键词 neuromorphic computation photonic spiking neuron photonic integrated DFB-SA array convolutional spiking neural network
下载PDF
Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics 被引量:2
20
作者 Daquan Yang Xiao Liu +3 位作者 Xiaogang Li Bing Duan Aiqiang Wang Yunfeng Xiao 《Journal of Semiconductors》 EI CAS CSCD 2021年第2期40-50,共11页
Integrated circuit(IC)industry has fully considered the fact that the Moore’s Law is slowing down or ending.Alternative solutions are highly and urgently desired to break the physical size limits in the More-than-Moo... Integrated circuit(IC)industry has fully considered the fact that the Moore’s Law is slowing down or ending.Alternative solutions are highly and urgently desired to break the physical size limits in the More-than-Moore era.Integrated silicon photonics technology exhibits distinguished potential to achieve faster operation speed,less power dissipation,and lower cost in IC industry,because their COMS compatibility,fast response,and high monolithic integration capability.Particularly,compared with other on-chip resonators(e.g.microrings,2D photonic crystal cavities)silicon-on-insulator(SOI)-based photonic crystal nanobeam cavity(PCNC)has emerged as a promising platform for on-chip integration,due to their attractive properties of ultra-high Q/V,ultra-compact footprints and convenient integration with silicon bus-waveguides.In this paper,we present a comprehensive review on recent progress of on-chip PCNC devices for lasing,modulation,switching/filting and label-free sensing,etc. 展开更多
关键词 PCNC integrated silicon photonics More-than-Moore LAB-ON-A-CHIP hybrid devices
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部