Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different phys...Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...展开更多
The giant jellyfish Nemopilema nomurai is the largest and most dangerous jellyfish species in East Asian waters,and the N.nomurai bloom causes serious problem in coastal industries,fisheries,and tourism.In the previou...The giant jellyfish Nemopilema nomurai is the largest and most dangerous jellyfish species in East Asian waters,and the N.nomurai bloom causes serious problem in coastal industries,fisheries,and tourism.In the previous surveys,we found N.nomurai could not be observed in the south of 30°N.In this paper,we analyzed the mechanism of this phenomenon.After exploring the possible impacts of different environmental factors,we found that physical processes are essential to the distribution pattern of N.nomurai rather than biological or chemical factors in the East China Sea.The combination of the location of the initial breeding places of N.nomurai and the current system determine the distribution pattern.This study could provide important insights to the potential control of the giant jellyfish in the Chinese coastal waters.展开更多
The physical processes associated with the clear-sky greenhouse effect in the presence of water vapor are examined by including surface emissivity in the greenhouse effect formulation, and by introducing a new way to ...The physical processes associated with the clear-sky greenhouse effect in the presence of water vapor are examined by including surface emissivity in the greenhouse effect formulation, and by introducing a new way to partition physical processes of the greenhouse effect. In this new framework, it is found that the clear-sky greenhouse effect is governed by three physical processes associated with (1) the temperature contrast between the surface and the atmosphere, (2) the interaction between the surface emissivity and the temperature contrast, and (3) the surface emissivity. The importance of the three physical processes is assessed by computing their vertical and spectral variations far the subarctic winter and summer standard atmosphere using the radiation model MODTRAN3 (Moderate Resolution Transmittance code Version 3). The results show that the process associated with the temperature contrast between the surface and the atmosphere dominates over the other two processes in magnitude. The magnitude of this process has substantial variations in the spectral region of 1250 to 1880 cm-1 and in the far infrared region. Due to the low-level temperature inversion over the subarctic winter, there exists a negative contribution to the greenhouse trapping. The seasonal variations are, however, dominated by the processes associated with the interaction between the surface emissivity and the temperature contrast as well as the surface emissivity itself. The magnitudes of these two physical processes contributing to the greenhouse trapping over the subarctic winter are about 7 to 10 times of those over the subarctic summer, whereas the magnitude of the processes associated with the temperature contrast in the subarctic summer is only about 2 times of that in the subarctic winter.展开更多
Based on the detection of the dynamic and thermodynamic functions of the physical processes in IAP3.0, the equilibrium mechanisms of the temperature, moisture and wind axe analyzed. The negative feedback between the l...Based on the detection of the dynamic and thermodynamic functions of the physical processes in IAP3.0, the equilibrium mechanisms of the temperature, moisture and wind axe analyzed. The negative feedback between the longwave radiation and temperature is verified. The cooling regulation of net radiation on temperature is mostly balanced by the heating of precipitation; the leading actions on temperature of other processes such as vertical diffusion, shallow cumulus convection and friction are merely available for lower air. The moisture consumption of precipitation is compensated on the whole by the provision of shallow cumulus convection, which sustains the moisture conservation to a high degree. The wind field is directly regulated by the momentum redistribution of cumulus, the dry adiabatic convection and vertical diffusion. Yet, the prominent influences of these processes are generally confined to the lower level. The east wind at low latitudes and the west wind at high latitudes are both weakened by the regulations and furthermore, by virtue of the transportation of mean meridional circulation, such a variation exactly maintains the angular momentum conservation.展开更多
In 1950, I graduated from Tsinghua University,majoring in machine building. Three years later, Ientered the Iron & Steel College in Moscow to start studying metallurgy as a postgraduate. After obtaining my associa...In 1950, I graduated from Tsinghua University,majoring in machine building. Three years later, Ientered the Iron & Steel College in Moscow to start studying metallurgy as a postgraduate. After obtaining my associate professorship, I came back home. I devoted the succeeding 40 years to the theory and technology of solidification, because I had realized the importance of the physical process of solidification in materials science and engineering technologies as a means of upgrading the properties of traditional materials and developing new materials. My contributions in this field might be listed as follows:展开更多
In this paper, the microphysical relationships of 8 dense fog events collected from a comprehensive fog observation campaign carried out at Pancheng(32.2 N, 118.7 E) in the Nanjing area, China in the winter of 2007 ...In this paper, the microphysical relationships of 8 dense fog events collected from a comprehensive fog observation campaign carried out at Pancheng(32.2 N, 118.7 E) in the Nanjing area, China in the winter of 2007 are investigated. Positive correlations are found among key microphysical properties(cloud droplet number concentration, droplet size, spectral standard deviation, and liquid water content) in each case, suggesting that the dominant processes in these fog events are likely droplet nucleation with subsequent condensational growth and/or droplet deactivation via complete evaporation of some droplets. The abrupt broadening of the fog droplet spectra indicates the occurrence of the collision-coalescence processes as well, although not dominating. The combined efects of the dominant processes and collision-coalescence on microphysical relationships are further analyzed by dividing the dataset according to visibility or autoconversion threshold in each case. The result shows that the specific relationships of number concentration to volume-mean radius and spectral standard deviation depend on the competition between the compensation of small droplets due to nucleation-condensation and the loss of small droplets due to collision-coalescence. Generally, positive correlations are found for diferent visibility or autoconversion threshold ranges in most cases, although negative correlations sometimes appear with lower visibility or larger autoconversion threshold. Therefore, the compensation of small droplets is generally stronger than the loss, which is likely related to the sufcient fog condensation nuclei in this polluted area.展开更多
Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical...Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.展开更多
Xishuangbanna of Yunnan Province is a famous tropical foggy region. A field experiment was carried out from November 23 to 30 of 1997 during which fogs occurred regularly every day. In the paper the characteristics of...Xishuangbanna of Yunnan Province is a famous tropical foggy region. A field experiment was carried out from November 23 to 30 of 1997 during which fogs occurred regularly every day. In the paper the characteristics of macrostructure of fog are analyzed and the physical processes of formation and dissipation of fog are studied. The results show that the Xishuangbanna valley fog forms firstly in the lower atmosphere with two-layer structures and then develops suddenly in the vertical direction after reaching the ground. Furthermore, the vegetation effect on the formation and dissipation of fog is discussed specially.展开更多
The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that ...The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that there are obvious differences among simulations of summer precipitation over China from different individual ensemble members.The simulated precipitation over China is sensitive to different cumulus convection,radiative transfer,and land surface process parameterizations.These differences lead to large uncertainties in the simulation results.The standard deviation of the simulated summer precipitation departure percentage over West China is larger than that over East China,signifying that the simulated precipitation over East China has higher reliability and consistency than that over West China.The Talagr and diagram shows that the ensemble system has reasonable dispersion in the simulated summer mean precipitation over East China.The summer ensemble mean precipitation over East China evaluated by various indices is better than most single simulations.The physical process ensemble technique reduces the uncertainties of the model physics in precipitation and improves the simulation results as a whole.Further, adopting the optimized ensemble mean method can obviously improve the performance of the pσ-RCM9 model in simulation of summer precipitation over East China.展开更多
The effects of different convective parameterization,explicit moisture schemes and surface heat- ing on the meso-β scale structure of a squall line system are investigated,by using an improved mesoscale model.It is f...The effects of different convective parameterization,explicit moisture schemes and surface heat- ing on the meso-β scale structure of a squall line system are investigated,by using an improved mesoscale model.It is found that the successful prediction of mesoscale convective systems hinges up- on not only the sub-grid scale convection,but also the resolvable scale phase change processes and the diurnal variation in the boundary layer.The simultaneous operation of the Fritsch-Chappell convective scheme with parameterized moist downdrafts and the prognostic equations for cloud water (ice) and rainwater (snow) seems to be essential in simulating realistically MCSs and reducing or eliminating the unrealistic development of the CISK-like instability associated with the squall line system.展开更多
In this work, we used a linear CCD to detect the whole physical developing process of silver diffusion transfer reversal process in photographic chemistry. The influence of the ingredient of the working solution was s...In this work, we used a linear CCD to detect the whole physical developing process of silver diffusion transfer reversal process in photographic chemistry. The influence of the ingredient of the working solution was studied.展开更多
A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of ...A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.展开更多
In order to quantitatively describe the geoelectric precursor anomaly in the short-impending process of earthquakes, a new geoelectric precursor index — (monthly) relative change rate of ground resistivity, R ρ...In order to quantitatively describe the geoelectric precursor anomaly in the short-impending process of earthquakes, a new geoelectric precursor index — (monthly) relative change rate of ground resistivity, R ρ (t) , is designed. Using this index and choosing the internationally accepted ground resistivity data before the Tangshan M =7.8 earthquake of July 28, 1976, the features of dynamic evolution pattern of R ρ(t) are studied. The results show that: ① about 10~9 months before earthquake, the ground resistivity in a certain range around the epicentral region begins to display the anomaly of accelerating descent, and the rate of descent is higher in the epicentral region than in surrounding areas; ② with the shortening of countdown before earthquake, the R ρ(t) value in epicentral region increases gradually (ground resistivity value decreases at an increasing rate); ③ the R ρ(t) value has the epicentral area as a center and its contour lines propagate towards surrounding areas with the shortening of countdown before earthquake; ④after the R ρ(t) value in epicentral region has descended at increasing rate to reach an extremity [ R ρ(t) = (7.0], it turns to descend at decreasing rate (2~3 months) and earthquake occurs when it accelerates again. Meanwhile, earthquake occurs when the contour lines of R ρ(t) stop propagating towards surrounding areas and turn to shrink back (2~3 months later). Its physical process can be explained by the″ swollen hypothesis″ of Prof. Fu and the theory of ″Slip-weakening and rockmass instability″ of Mei, Niu, et al ..展开更多
The article is devoted to the application of new radial sports games basketball in physical education of preschool children. The benefits of a new game: expanding the playing space attributable to each player, limiti...The article is devoted to the application of new radial sports games basketball in physical education of preschool children. The benefits of a new game: expanding the playing space attributable to each player, limiting the opposition defenders and facilitates the use of gaming devices. The use of innovative methods in physical training of preschool children gives you the opportunity to solve successfully the whole complex of educational issues and the full development of the child.展开更多
This paper constructs and studies a nonlinear multivariate regression-tensor model for substantiation of necessary/sufficient conditions of optimization of technological calculation of multifactor physical and chemica...This paper constructs and studies a nonlinear multivariate regression-tensor model for substantiation of necessary/sufficient conditions of optimization of technological calculation of multifactor physical and chemical process of hardening of complex composite media for metal coatings. An adaptive a posteriori procedure for parametric formation of the target quality functional of integrative physical and mechanical properties of the designed metal coating has been proposed. The results of the research may serve as elements of a mathematical language when creating automated design of precision nanotechnologies for surface hardening of complex composite metal coatings on the basis of complex tribological and anticorrosive tests.展开更多
The old classical problems of theoretical physics are revisited from the point of view of nonlocal physics. Nonlocal physics leads to very complicated mathematical apparatus. Here, we explain the main principles of no...The old classical problems of theoretical physics are revisited from the point of view of nonlocal physics. Nonlocal physics leads to very complicated mathematical apparatus. Here, we explain the main principles of nonlocal physics using transparent considerations and animations.展开更多
A process of "Methanol or Dimethylether to Olefins" developed by Dalian Institute of Chemical Physics (DICP), designated as the DMTO process, has attained great success in industrial scaling up testing. DICP, by c...A process of "Methanol or Dimethylether to Olefins" developed by Dalian Institute of Chemical Physics (DICP), designated as the DMTO process, has attained great success in industrial scaling up testing. DICP, by collaborating with the Xinxing Coal Chemical Co., Ltd. of Shaanxi Province and the Luoyang Petrochemical Engineering Co. of the SINOPEC Group, operated successfully a 50t(methanol)/d unit for the conversion of methanol to lower olefins, with a methanol conversion of close to 100%, and a selectivity to lower olefins(ethylene, propylene and butylenes) of higher than 90%. On 23rd August, the industrial test project has passed a state appraisal. The experts of the Appraisal Group, headed by Prof. YUAN Qingtang, academician of Chinese Academy of Engineering, drew the conclusions that the DMTO process, by utilizing a proprietary SAPO-34 catalyst system and a recycling fluidized bed reaction system for the production of lower olefins from methanol, is the first unit in the world having a capacity of producing nearly ten thousand tons lower olefins per year. The technological level of the industrial test is at a leading position internationally. This accomplishment will provide a sound base for the subsequent commercialization of the DMTO process.展开更多
The biological pump,driven by phytoplankton production and death,plays a crucial role in the ocean’s sequestration of atmospheric CO_(2).In particular,marginal seas with high primary productivity show a significant c...The biological pump,driven by phytoplankton production and death,plays a crucial role in the ocean’s sequestration of atmospheric CO_(2).In particular,marginal seas with high primary productivity show a significant capacity for carbon fixation.Variations in phytoplankton biomass and community structure are key factors influencing the efficiency of the marine biological pump.The Taiwan Strait(TS)is a unique shallow conduit that connects the East China Sea(ECS)and the South China Sea(SCS),which are subject to seasonal monsoons and episodic events(e.g.,typhoons and floods).Thus,its planktonic ecosystem is significantly influenced by physical processes such as strong ocean currents,coastal upwelling and river discharge,resulting in noticeable seasonal variability.In this study,we examined spatiotemporal patterns of phytoplankton biomass and community structure using phytoplankton-sourced biomarkers from suspended particles in surface waters across all four seasons from 2019 to 2020 in the TS.The findings highlight notable seasonal disparities in phytoplankton biomass,with spring and summer exhibiting significantly higher levels compared to autumn and winter.In order to determine phytoplankton ecosystem responses to various physical and biological processes on a seasonal scale,we used Empirical Orthogonal/Eigen Function(EOF)analysis to investigate the covarying spatiotemporal patterns of:marine-sourced biomarkers and terrestrial-sourced biomarkers in surface suspended particles,a biomass indicator(Chl a),water-mass indicators[sea surface temperature(SST),sea surface salinity(SSS),nutrients],and a hydrodynamic indicator[total suspended solids at surface/bottom water,(TSS_S and TSS_B)].The results identified six physical-biological coupling modes that influence seasonal variations in marine phytoplankton ecosystems within the energetic strait system.Additionally,an in-depth understanding of the coupling between physical process and lipid biomarker signals from suspended particles in the contemporary marine environment can offer valuable insights for interpreting ancient sediment records of phytoplankton ecosystem evolution in the TS.展开更多
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcast...A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.展开更多
基金National Natural Science Foundation of China (No. 40275004)State Key Laboratory of Atmosphere Physics and Chemistry
文摘Based on the existing Land Surface Physical Process Models(Deardorff, Dickinson, LIU, Noilhan, Seller, ZHAO), a Comprehensive Land Surface Physical Process Model (CLSPPM) is developed by considering the different physical processes of the earth's surface-vegetation-atmosphere system more completely. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feas...
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA19060204,XDA23050502)the State Key Program of National Natural Science of China(No.42130411)+4 种基金the Key Deployment Project of Centre for Ocean Mega-Research of ScienceChinese Academy of Sciences(CAS)(No.COMS2019J03)the International Science Partnership Program of the Chinese Academy of Sciences(Nos.121311KYSB20190029,133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)。
文摘The giant jellyfish Nemopilema nomurai is the largest and most dangerous jellyfish species in East Asian waters,and the N.nomurai bloom causes serious problem in coastal industries,fisheries,and tourism.In the previous surveys,we found N.nomurai could not be observed in the south of 30°N.In this paper,we analyzed the mechanism of this phenomenon.After exploring the possible impacts of different environmental factors,we found that physical processes are essential to the distribution pattern of N.nomurai rather than biological or chemical factors in the East China Sea.The combination of the location of the initial breeding places of N.nomurai and the current system determine the distribution pattern.This study could provide important insights to the potential control of the giant jellyfish in the Chinese coastal waters.
文摘The physical processes associated with the clear-sky greenhouse effect in the presence of water vapor are examined by including surface emissivity in the greenhouse effect formulation, and by introducing a new way to partition physical processes of the greenhouse effect. In this new framework, it is found that the clear-sky greenhouse effect is governed by three physical processes associated with (1) the temperature contrast between the surface and the atmosphere, (2) the interaction between the surface emissivity and the temperature contrast, and (3) the surface emissivity. The importance of the three physical processes is assessed by computing their vertical and spectral variations far the subarctic winter and summer standard atmosphere using the radiation model MODTRAN3 (Moderate Resolution Transmittance code Version 3). The results show that the process associated with the temperature contrast between the surface and the atmosphere dominates over the other two processes in magnitude. The magnitude of this process has substantial variations in the spectral region of 1250 to 1880 cm-1 and in the far infrared region. Due to the low-level temperature inversion over the subarctic winter, there exists a negative contribution to the greenhouse trapping. The seasonal variations are, however, dominated by the processes associated with the interaction between the surface emissivity and the temperature contrast as well as the surface emissivity itself. The magnitudes of these two physical processes contributing to the greenhouse trapping over the subarctic winter are about 7 to 10 times of those over the subarctic summer, whereas the magnitude of the processes associated with the temperature contrast in the subarctic summer is only about 2 times of that in the subarctic winter.
基金This study was supported by the National Natural Science Foundation of China under Grant No.40233027.
文摘Based on the detection of the dynamic and thermodynamic functions of the physical processes in IAP3.0, the equilibrium mechanisms of the temperature, moisture and wind axe analyzed. The negative feedback between the longwave radiation and temperature is verified. The cooling regulation of net radiation on temperature is mostly balanced by the heating of precipitation; the leading actions on temperature of other processes such as vertical diffusion, shallow cumulus convection and friction are merely available for lower air. The moisture consumption of precipitation is compensated on the whole by the provision of shallow cumulus convection, which sustains the moisture conservation to a high degree. The wind field is directly regulated by the momentum redistribution of cumulus, the dry adiabatic convection and vertical diffusion. Yet, the prominent influences of these processes are generally confined to the lower level. The east wind at low latitudes and the west wind at high latitudes are both weakened by the regulations and furthermore, by virtue of the transportation of mean meridional circulation, such a variation exactly maintains the angular momentum conservation.
文摘In 1950, I graduated from Tsinghua University,majoring in machine building. Three years later, Ientered the Iron & Steel College in Moscow to start studying metallurgy as a postgraduate. After obtaining my associate professorship, I came back home. I devoted the succeeding 40 years to the theory and technology of solidification, because I had realized the importance of the physical process of solidification in materials science and engineering technologies as a means of upgrading the properties of traditional materials and developing new materials. My contributions in this field might be listed as follows:
基金Supported by National Natural Science Foundation of China (41305120,41030962,41275151,41375138,41375137,and 41305034)Natural Science Foundation of Jiangsu Province (BK20130988,SK201220841)+8 种基金Specialized Research Fund for the Doctoral Program of Higher Education (20133228120002)China Meteorological Administration Special Public Welfare Research Fund (GYHY201406007)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (13KJB170014)Open Funding from Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration (KDW1201,KDW1102)Open Funding from Key Laboratory of Meteorological Disaster of Ministry of Education (KLME1205,KLME1107)Open Funding from State Key Laboratory of Severe Weather (2013LASW-B06)Qing-Lan Project for Cloud-Fog-Precipitation-Aerosol Study in Jiangsu ProvinceProject Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsU.S. Department of Energy’s (DOE) Earth System Modeling (ESM) program via the FASTER project (www.bnl.gov/faster) and Atmospheric System Research (ASR) program
文摘In this paper, the microphysical relationships of 8 dense fog events collected from a comprehensive fog observation campaign carried out at Pancheng(32.2 N, 118.7 E) in the Nanjing area, China in the winter of 2007 are investigated. Positive correlations are found among key microphysical properties(cloud droplet number concentration, droplet size, spectral standard deviation, and liquid water content) in each case, suggesting that the dominant processes in these fog events are likely droplet nucleation with subsequent condensational growth and/or droplet deactivation via complete evaporation of some droplets. The abrupt broadening of the fog droplet spectra indicates the occurrence of the collision-coalescence processes as well, although not dominating. The combined efects of the dominant processes and collision-coalescence on microphysical relationships are further analyzed by dividing the dataset according to visibility or autoconversion threshold in each case. The result shows that the specific relationships of number concentration to volume-mean radius and spectral standard deviation depend on the competition between the compensation of small droplets due to nucleation-condensation and the loss of small droplets due to collision-coalescence. Generally, positive correlations are found for diferent visibility or autoconversion threshold ranges in most cases, although negative correlations sometimes appear with lower visibility or larger autoconversion threshold. Therefore, the compensation of small droplets is generally stronger than the loss, which is likely related to the sufcient fog condensation nuclei in this polluted area.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 40275004 and 49575251.
文摘Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.
基金The paper was supported financially by the National Natural Science Foundation of China 49665012.
文摘Xishuangbanna of Yunnan Province is a famous tropical foggy region. A field experiment was carried out from November 23 to 30 of 1997 during which fogs occurred regularly every day. In the paper the characteristics of macrostructure of fog are analyzed and the physical processes of formation and dissipation of fog are studied. The results show that the Xishuangbanna valley fog forms firstly in the lower atmosphere with two-layer structures and then develops suddenly in the vertical direction after reaching the ground. Furthermore, the vegetation effect on the formation and dissipation of fog is discussed specially.
基金the National Natural Science Foundation of China under Grant No.40805041Chinese COPES Project under Grant No.GYHY200706005
文摘The effects of the physical process ensemble technique on simulation of summer precipitation over China have been studied by using a p-σregional climate model with 9 vertical levels(pσ-RCM9).The results show that there are obvious differences among simulations of summer precipitation over China from different individual ensemble members.The simulated precipitation over China is sensitive to different cumulus convection,radiative transfer,and land surface process parameterizations.These differences lead to large uncertainties in the simulation results.The standard deviation of the simulated summer precipitation departure percentage over West China is larger than that over East China,signifying that the simulated precipitation over East China has higher reliability and consistency than that over West China.The Talagr and diagram shows that the ensemble system has reasonable dispersion in the simulated summer mean precipitation over East China.The summer ensemble mean precipitation over East China evaluated by various indices is better than most single simulations.The physical process ensemble technique reduces the uncertainties of the model physics in precipitation and improves the simulation results as a whole.Further, adopting the optimized ensemble mean method can obviously improve the performance of the pσ-RCM9 model in simulation of summer precipitation over East China.
文摘The effects of different convective parameterization,explicit moisture schemes and surface heat- ing on the meso-β scale structure of a squall line system are investigated,by using an improved mesoscale model.It is found that the successful prediction of mesoscale convective systems hinges up- on not only the sub-grid scale convection,but also the resolvable scale phase change processes and the diurnal variation in the boundary layer.The simultaneous operation of the Fritsch-Chappell convective scheme with parameterized moist downdrafts and the prognostic equations for cloud water (ice) and rainwater (snow) seems to be essential in simulating realistically MCSs and reducing or eliminating the unrealistic development of the CISK-like instability associated with the squall line system.
文摘In this work, we used a linear CCD to detect the whole physical developing process of silver diffusion transfer reversal process in photographic chemistry. The influence of the ingredient of the working solution was studied.
文摘A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.
文摘In order to quantitatively describe the geoelectric precursor anomaly in the short-impending process of earthquakes, a new geoelectric precursor index — (monthly) relative change rate of ground resistivity, R ρ (t) , is designed. Using this index and choosing the internationally accepted ground resistivity data before the Tangshan M =7.8 earthquake of July 28, 1976, the features of dynamic evolution pattern of R ρ(t) are studied. The results show that: ① about 10~9 months before earthquake, the ground resistivity in a certain range around the epicentral region begins to display the anomaly of accelerating descent, and the rate of descent is higher in the epicentral region than in surrounding areas; ② with the shortening of countdown before earthquake, the R ρ(t) value in epicentral region increases gradually (ground resistivity value decreases at an increasing rate); ③ the R ρ(t) value has the epicentral area as a center and its contour lines propagate towards surrounding areas with the shortening of countdown before earthquake; ④after the R ρ(t) value in epicentral region has descended at increasing rate to reach an extremity [ R ρ(t) = (7.0], it turns to descend at decreasing rate (2~3 months) and earthquake occurs when it accelerates again. Meanwhile, earthquake occurs when the contour lines of R ρ(t) stop propagating towards surrounding areas and turn to shrink back (2~3 months later). Its physical process can be explained by the″ swollen hypothesis″ of Prof. Fu and the theory of ″Slip-weakening and rockmass instability″ of Mei, Niu, et al ..
文摘The article is devoted to the application of new radial sports games basketball in physical education of preschool children. The benefits of a new game: expanding the playing space attributable to each player, limiting the opposition defenders and facilitates the use of gaming devices. The use of innovative methods in physical training of preschool children gives you the opportunity to solve successfully the whole complex of educational issues and the full development of the child.
文摘This paper constructs and studies a nonlinear multivariate regression-tensor model for substantiation of necessary/sufficient conditions of optimization of technological calculation of multifactor physical and chemical process of hardening of complex composite media for metal coatings. An adaptive a posteriori procedure for parametric formation of the target quality functional of integrative physical and mechanical properties of the designed metal coating has been proposed. The results of the research may serve as elements of a mathematical language when creating automated design of precision nanotechnologies for surface hardening of complex composite metal coatings on the basis of complex tribological and anticorrosive tests.
文摘The old classical problems of theoretical physics are revisited from the point of view of nonlocal physics. Nonlocal physics leads to very complicated mathematical apparatus. Here, we explain the main principles of nonlocal physics using transparent considerations and animations.
文摘A process of "Methanol or Dimethylether to Olefins" developed by Dalian Institute of Chemical Physics (DICP), designated as the DMTO process, has attained great success in industrial scaling up testing. DICP, by collaborating with the Xinxing Coal Chemical Co., Ltd. of Shaanxi Province and the Luoyang Petrochemical Engineering Co. of the SINOPEC Group, operated successfully a 50t(methanol)/d unit for the conversion of methanol to lower olefins, with a methanol conversion of close to 100%, and a selectivity to lower olefins(ethylene, propylene and butylenes) of higher than 90%. On 23rd August, the industrial test project has passed a state appraisal. The experts of the Appraisal Group, headed by Prof. YUAN Qingtang, academician of Chinese Academy of Engineering, drew the conclusions that the DMTO process, by utilizing a proprietary SAPO-34 catalyst system and a recycling fluidized bed reaction system for the production of lower olefins from methanol, is the first unit in the world having a capacity of producing nearly ten thousand tons lower olefins per year. The technological level of the industrial test is at a leading position internationally. This accomplishment will provide a sound base for the subsequent commercialization of the DMTO process.
基金The National Key Research and Development Program of China under contract No.2019YFE0124700the Scientific Research Foundation of Third Institute of Oceanography,MNR under contract Nos 2019018 and 2019017+2 种基金the National Natural Science Foundation of China under contract Nos 42076038,U22A20585 and 41776099the Guangdong Basic and Applied Basic Research Foundation under contract No.2021A1515011886the STU Scientific Research Start-Up Foundation for Talents under contract No.NTF18011.
文摘The biological pump,driven by phytoplankton production and death,plays a crucial role in the ocean’s sequestration of atmospheric CO_(2).In particular,marginal seas with high primary productivity show a significant capacity for carbon fixation.Variations in phytoplankton biomass and community structure are key factors influencing the efficiency of the marine biological pump.The Taiwan Strait(TS)is a unique shallow conduit that connects the East China Sea(ECS)and the South China Sea(SCS),which are subject to seasonal monsoons and episodic events(e.g.,typhoons and floods).Thus,its planktonic ecosystem is significantly influenced by physical processes such as strong ocean currents,coastal upwelling and river discharge,resulting in noticeable seasonal variability.In this study,we examined spatiotemporal patterns of phytoplankton biomass and community structure using phytoplankton-sourced biomarkers from suspended particles in surface waters across all four seasons from 2019 to 2020 in the TS.The findings highlight notable seasonal disparities in phytoplankton biomass,with spring and summer exhibiting significantly higher levels compared to autumn and winter.In order to determine phytoplankton ecosystem responses to various physical and biological processes on a seasonal scale,we used Empirical Orthogonal/Eigen Function(EOF)analysis to investigate the covarying spatiotemporal patterns of:marine-sourced biomarkers and terrestrial-sourced biomarkers in surface suspended particles,a biomass indicator(Chl a),water-mass indicators[sea surface temperature(SST),sea surface salinity(SSS),nutrients],and a hydrodynamic indicator[total suspended solids at surface/bottom water,(TSS_S and TSS_B)].The results identified six physical-biological coupling modes that influence seasonal variations in marine phytoplankton ecosystems within the energetic strait system.Additionally,an in-depth understanding of the coupling between physical process and lipid biomarker signals from suspended particles in the contemporary marine environment can offer valuable insights for interpreting ancient sediment records of phytoplankton ecosystem evolution in the TS.
文摘A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.